The Influence of Algorithmic Management on Employees Perceptions of Organisational Justice – A Conceptual Paper

Published: April 10, 2024

Authors

Shefali Sharma, Priyanka Sharma, and Rohit Sharma

Keywords
Organisational justice, Algorithmic management, Perceived organisational support, Distributive justice, Procedural justice, Interpersonal justice, Interactional justice

Abstract

Background: The use of algorithms in organizations has become increasingly common, with many companies transitioning managerial control from humans to algorithms. While algorithmic management promises significantly efficiency gains, it overlooks an important factor of employees’ perception of fairness towards their workplace. Employees pay close attention to how they perceive justice in the workplace; their behavior is shaped by these perceptions.

Purpose: This study aims to explore how algorithmic management systems can be designed to balance efficiency with transparency and fairness. So, to foster a sense of justice, organizations should design algorithmic systems in such a way to ensure a transparent decision-making process where employees clearly understand how decisions are made and can trust the outcomes.

Method: A review of literature on algorithmic management and workplace fairness was conducted, focusing on the impact of transparent decision-making processes, equitable resource distribution, and constructive feedback mechanisms on employee trust and engagement.

Results: Providing timely and constructive feedback and equal distribution of resources can foster a strong sense of fairness, making employees valued and connected to the organization. This will enhance employee trust, engagement, and overall organizational performance, as workers will be more likely to align with the company’s goals when they are treated fairly.

Conclusion: Organizations should prioritize fairness and transparency in the design of algorithmic management systems. Treating employees fairly not only strengthens their connection to the organization but also aligns their efforts with its objectives.

References

  • Adams, J. S. (1963). Towards an understanding of inequity. The journal of abnormal and social psychology67(5), 422. https://doi.org/10.1037/h0040968
  • Adams, J. S. (1965). Inequity in social exchange. Advances in experimental social psychology2, 267-299. https://cir.nii.ac.jp/crid/1571135651366420608
  • Anwar, M. A., & Graham, M. (2021). Between a rock and a hard place: Freedom, flexibility, precarity and vulnerability in the gig economy in Africa. Competition & Change25(2), 237-258. https://doi.org/10.1177/1024529421998818
  • Armenakis, A. A., & Harris, S. G. (2002). Crafting a change message to create transformational readiness. Journal of organizational change management15(2), 169-183. https://doi.org/10.1108/09534810210423080
  • Baiocco, S., Fernández-Macías, E., Rani, U., & Pesole, A. (2022). The Algorithmic Management of work and its implications in different contexts (No. 2022/02). JRC Working Papers Series on Labour, Education and Technology. https://hdl.handle.net/10419/262292
  • Bernerth, J. B., Armenakis, A. A., Feild, H. S., & Walker, H. J. (2007). Justice, cynicism, and commitment: A study of important organizational change variables. The Journal of Applied Behavioral Science43(3), 303-326. https://doi.org/10.1177/0021886306296602
  • Bernerth, J. B., Feild, H. S., Giles, W. F., & Cole, M. S. (2006). Perceived fairness in employee selection: The role of applicant personality. Journal of Business and Psychology20, 545-563. https://doi.org/10.1007/s10869-006-9022-2.
  • Bies, R. J., & Shapiro, D. L. (1987). Interactional fairness judgments: The influence of causal accounts. Social justice research1, 199-218. https://doi.org/10.1007/BF01048016
  • Bovens, M., & Zouridis, S. (2002). From street‐level to system‐level bureaucracies: How information and communication technology is transforming administrative discretion and constitutional control. Public administration review62(2), 174-184. https://doi.org/10.1111/0033-3352.00168
  • Brockner, J., Konovsky, M., Cooper-Schneider, R., Folger, R., Martin, C., & Bies, R. J. (1994). Interactive effects of procedural justice and outcome negativity on victims and survivors of job loss. Academy of management Journal37(2), 397-409. https://doi.org/10.5465/256835
  • Bucher, E. L., Schou, P. K., & Waldkirch, M. (2021). Pacifying the algorithm–Anticipatory compliance in the face of algorithmic management in the gig economy. Organization, 28(1), 44-67. https://doi.org/10.1177/1350508420961531
  • Bujold, A., Parent-Rocheleau, X., & Gaudet, M. C. (2022). Opacity behind the wheel: The relationship between transparency of algorithmic management, justice perception, and intention to quit among truck drivers. Computers in Human Behavior Reports8, 100245. https://doi.org/10.1016/j.chbr.2022.100245
  • Cascio, W. F., & Montealegre, R. (2016). How technology is changing work and organizations. Annual review of organizational psychology and organizational behavior3(1), 349-375. https://doi.org/10.1146/annurev-orgpsych-041015-062352
  • Cheng, M. M., & Hackett, R. D. (2021). A critical review of algorithms in HRM: Definition, theory, and practice. Human Resource Management Review31(1), 100698. https://doi.org/10.1016/j.hrmr.2019.100698
  • Citron, D. K., & Pasquale, F. (2014). The scored society: Due process for automated predictions. Wash. L. Rev.89, 1.
  • Colquitt, J. A. (2001). On the dimensionality of organizational justice: a construct validation of a measure. Journal of applied psychology86(3), 386. https://psycnet.apa.org/buy/2001-06715-002
  • Colquitt, J. A. (2004). Does the justice of the one interact with the justice of the many? Reactions to procedural justice in teams. Journal of Applied Psychology89(4), 633. https://psycnet.apa.org/doi/10.1037/0021-9010.89.4.633
  • Colquitt, J. A., Zapata-Phelan, C. P., & Roberson, Q. M. (2005). Justice in teams: A review of fairness effects in collective contexts. Research in personnel and human resources management, 53-94. https://doi.org/10.1016/S0742-7301(05)24002-1
  • Crawford, K. (2021). The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.
  • Crawford, K., & Schultz, J. (2014). Big data and due process: Toward a framework to redress predictive privacy harms. BCL Rev.55, 93. https://heinonline.org/HOL/LandingPage?handle=hein.journals/bclr55&div=5&id=&page=
  • Cropanzano, R., Bowen, D. E., & Gilliland, S. W. (2007). The management of organizational justice. Academy of management perspectives21(4), 34-48. https://doi.org/10.5465/amp.2007.27868379
  • Cropanzano, Russell & Rupp, Deborah & Mohler, Carolyn & Schminke, Marshall. (2001). Three roads to organizational justice. Research in Personnel and Human Resources Management. 20. 1-113. https://doi.org/10.1016/S0742-7301(01)20001-2.
  • Curchod, C., Patriotta, G., Cohen, L., & Neysen, N. (2020). Working for an algorithm: Power asymmetries and agency in online work settings. Administrative science quarterly65(3), 644-676. https://doi.org/10.1037/0021-9010.86.3.386
  • Daly, J. P., & Geyer, P. D. (1994). The role of fairness in implementing large‐scale change: Employee evaluations of process and outcome in seven facility relocations. Journal of Organizational Behavior15(7), 623-638. https://doi.org/10.1002/job.4030150703
  • Danaher, J. (2016). The threat of algocracy: Reality, resistance and accommodation. Philosophy & technology29(3), 245-268. https://doi.org/10.1007/s13347-015-0211-1
  • Dolata, M., Feuerriegel, S., & Schwabe, G. (2022). A sociotechnical view of algorithmic fairness. Information Systems Journal32(4), 754-818. https://doi.org/10.1111/isj.12364
  • Duggan, J., Sherman, U., Carbery, R., & McDonnell, A. (2020). Algorithmic management and app‐work in the gig economy: A research agenda for employment relations and HRM. Human Resource Management Journal30(1), 114-132. https://doi.org/10.1111/1748-8583.12258
  • Ebrahimi, S., & Hassanein, K. (2019). Empowering Users to Detect Data Analytics Discriminatory Recommendations. In ICIS. https://core.ac.uk/download/pdf/301383872.pdf
  • Eisenberger, R., Huntington, R., Hutchison, S., & Sowa, D. (1986). Perceived organizational support. Journal of Applied psychology71(3), 500. https://psycnet.apa.org/buy/1986-31507-001
  • Faraj, S., Pachidi, S., & Sayegh, K. (2018). Working and organizing in the age of the learning algorithm. Information and Organization28(1), 62-70. https://doi.org/10.1016/j.infoandorg.2018.02.005
  • Feuerriegel, S., Dolata, M., & Schwabe, G. (2020). Fair AI: Challenges and opportunities. Business & information systems engineering62, 379-384. https://doi.org/10.1007/s12599-020-00645-0
  • Folger, R., & Konovsky, M. A. (1989). Effects of procedural and distributive justice on reactions to pay raise decisions. Academy of Management journal32(1), 115-130. https://doi.org/10.5465/256422
  • Foster, R. D. (2010). Resistance, justice, and commitment to change. Human resource development quarterly21(1), 3-39. https://doi.org/10.1002/hrdq.20041
  • Geissinger, A., Laurell, C., Öberg, C., Sandström, C., & Suseno, Y. (2022). The sharing economy and the transformation of work: Evidence from Foodora. Personnel review51(2), 584-602. https://doi.org/10.1108/PR-08-2019-0450
  • Georgalis, J., Samaratunge, R., Kimberley, N., & Lu, Y. (2015). Change process characteristics and resistance to organisational change: The role of employee perceptions of justice. Australian Journal of Management40(1), 89-113. https://doi.org/10.1177/0312896213501953
  • Glavin, P., & Schieman, S. (2022). Dependency and hardship in the gig economy: The mental health consequences of platform work. Socius8. https://doi.org/10.1177/23780231221082414
  • Greenberg, J. (1986). Determinants of perceived fairness of performance evaluations. Journal of applied psychology71(2), 340. https://doi.org/10.1037/0021-9010.71.2.340
  • Greenberg, J. (1990). Organizational justice: Yesterday, today, and tomorrow. Journal of management16(2), 399-432. https://doi.org/10.1177/014920639001600204
  • Greenberg, J. (1993). Stealing in the name of justice: Informational and interpersonal moderators of theft reactions to underpayment inequity. Organizational behavior and human decision processes54(1), 81-103. https://doi.org/10.1006/obhd.1993.1006
  • Greenberg, J., & Colquitt, J. A. (2013). Handbook of organizational justice. Psychology Press.
  • Gregory, K. (2021). ‘My life is more valuable than this’: Understanding risk among on-demand food couriers in Edinburgh. Work, Employment and Society35(2), 316-331. https://doi.org/10.1177/0950017020949568
  • Griesbach, K., Reich, A., Elliott-Negri, L., & Milkman, R. (2019). Algorithmic control in platform food delivery work. Socius5. https://doi.org/10.1177/2378023119870041
  • Guendelsberger, E. (2019). On the clock: What low-wage work did to me and how it drives America insane. Hachette UK.
  • Heaven, W. D. (2020). The UK is dropping an immigration algorithm that critics say is racist. AI MIT Technology Review.
  • Hill, K. (2021). Algorithmic insecurity, schedule non standardness, and gig worker wellbeing. Schedule Nonstandardness, and Gig Worker Wellbeing (January 25, 2021). https://dx.doi.org/10.2139/ssrn.3773164
  • Horvath, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technological forecasting and social change146, 119-132. https://doi.org/10.1016/j.techfore.2019.05.021
  • Jabagi, N., Croteau, A. M., & Audebrand, L. (2020). Perceived organizational support in the face of algorithmic management: a conceptual model. http://hdl.handle.net/10125/64231
  • Jago, A. S., Carroll, G. R., & Lin, M. (2022). Generating authenticity in automated work. Journal of Experimental Psychology: Applied28(1), 52. https://psycnet.apa.org/buy/2022-40063-001
  • Jarrahi, M. H., & Sutherland, W. (2019). Algorithmic management and algorithmic competencies: Understanding and appropriating algorithms in gig work. Information in Contemporary Society: 14th International Conference, iConference 2019, Washington, DC, USA, March 31–April 3, 2019, Proceedings 14, 578-589. https://doi.org/10.1007/978-3-030-15742-5_55
  • Jarrahi, M. H., Newlands, G., Lee, M. K., Wolf, C. T., Kinder, E., & Sutherland, W. (2021). Algorithmic management in a work context. Big Data & Society8(2), 20539517211020332. https://doi.org/10.1177/20539517211020332
  • Judge, T. A., & Colquitt, J. A. (2004). Organizational justice and stress: the mediating role of work-family conflict. Journal of applied psychology89(3), 395. https://psycnet.apa.org/buy/2004-95165-001
  • Kane, G. C., Young, A. G., Majchrzak, A., & Ransbotham, S. (2021). Avoiding an oppressive future of machine learning: A design theory for emancipatory assistants. Mis Quarterly45(1), 371-396. https://doi.org/10.25300/MISQ/2021/14606
  • Keith, M. G., Harms, P. D., & Long, A. C. (2020). Worker health and well-being in the gig economy: A proposed framework and research agenda. Entrepreneurial and small business stressors, experienced stress, and well-being, 1-33. https://doi.org/10.1108/S1479-355520200000018002
  • Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of management annals14(1), 366-410. https://doi.org/10.5465/annals.2018.0174
  • Kroll, J. A., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Yu, H. (2016). Accountable algorithms. University of Pennsylvania Law Review, 165(3), 633. https://scholarship.law.upenn.edu/penn_law_review/vol165/iss3/3/
  • Lamers, L., Meijerink, J., Jansen, G., & Boon, M. (2022). A Capability Approach to worker dignity under Algorithmic Management. Ethics and information technology24(1), 10. https://doi.org/10.1007/s10676-021-09640-3
  • Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society5(1), 2053951718756684. https://doi.org/10.1177/2053951718756684
  • Lesala Khethisa, B., Tsibolane, P., & Van Belle, J. P. (2020). Surviving the Gig economy in the global south: How Cape Town domestic workers cope. The Future of Digital Work: The Challenge of Inequality: IFIP WG 8.2, 9.1, 9.4 Joint Working Conference, IFIPJWC 2020, Hyderabad, India, December 10–11, 2020, Proceedings, 67-85. https://doi.org/10.1007/978-3-030-77887-1_6
  • Leventhal, G. S. (1976). The Distribution of Rewards and Resources in Groups and Organizations. Advances in experimental social psychology/Academic Press.
  • Leventhal, G. S. (1980). What should be done with equity theory? New approaches to the study of fairness in social relationships. Social exchange: Advances in theory and research, 27-55. https://doi.org/10.1007/978-1-4613-3087-5_2
  • Lipponen, J., Olkkonen, M. E., & Moilanen, M. (2004). Perceived procedural justice and employee responses to an organizational merger. European journal of work and organizational psychology13(3), 391-413.
  • Lipsky, M. (2010). Street-level bureaucracy: Dilemmas of the individual in public service. Russell Sage Foundation.
  • Martínez‐Tur, V., Peiró, J. M., Ramos, J., & Moliner, C. (2006). Justice perceptions as predictors of customer satisfaction: The impact of distributive, procedural, and interactional justice 1. Journal of applied social psychology36(1), 100-119. https://doi.org/10.1111/j.0021-9029.2006.00005.x
  • McFarlin, D. B., & Sweeney, P. D. (1992). Distributive and procedural justice as predictors of satisfaction with personal and organizational outcomes. Academy of management Journal35(3), 626-637. https://doi.org/10.5465/256489
  • Mohlmann, M., & Zalmanson, L. (2017). Hands on the wheel: Navigating algorithmic management and Uber drivers.’ Autonomy’, in proceedings of the international conference on information systems (ICIS), Seoul South Korea, 10-13.
  • Nagtegaal, R. (2021). The impact of using algorithms for managerial decisions on public employees’ procedural justice. Government Information Quarterly38(1), 101536. https://doi.org/10.1016/j.giq.2020.101536
  • Newlands, G. (2021). Algorithmic surveillance in the gig economy: The organization of work through Lefebvrian conceived space. Organization Studies42(5), 719-737. https://doi.org/10.1177/0170840620937900
  • Newman, D. T., Fast, N. J., & Harmon, D. J. (2020). When eliminating bias isn’t fair: Algorithmic reductionism and procedural justice in human resource decisions. Organizational Behavior and Human Decision Processes160, 149-167. https://doi.org/10.1016/j.obhdp.2020.02.005
  • Oreg, S. (2006). Personality, context, and resistance to organizational change. European journal of work and organizational psychology15(1), 73-101. https://doi.org/10.1080/13594320500451247
  • Parent-Rocheleau, X., & Parker, S. K. (2022). Algorithms as work designers: How algorithmic management influences the design of jobs. Human resource management review32(3), 100838. https://doi.org/10.1016/j.hrmr.2022.100838
  • Park, M. S., Jo, H., Lee, H., Jung, S. Y., & Hwang, H. J. (2022). Machine learning-based COVID-19 patients triage algorithm using patient-generated health data from nationwide multicenter database. Infectious Diseases and Therapy11(2), 787-805. https://doi.org/10.1007/s40121-022-00600-4
  • Parkin, J. (2011). Adaptable due process. U. Pa. L. Rev.160, 1309.
  • Paterson, J. M., Green, A., & Cary, J. (2002). The measurement of organizational justice in organizational change programmes: A reliability, validity and context‐sensitivity assessment. Journal of Occupational and Organizational Psychology75(4), 393-408. https://doi.org/10.1348/096317902321119565
  • Rhoades, L., & Eisenberger, R. (2002). Perceived organizational support: a review of the literature. Journal of applied psychology87(4), 698. https://psycnet.apa.org/buy/2002-15406-008
  • Rosenblat, A. (2018). Uberland: How algorithms are rewriting the rules of work. Univ of California Press.
  • Rosenblat, A., Levy, K. E., Barocas, S., & Hwang, T. (2017). Discriminating tastes: Uber’s customer ratings as vehicles for workplace discrimination. Policy & Internet9(3), 256-279. https://doi.org/10.1002/poi3.153
  • Saunders, M. N., & Thornhill, A. (2003). Organisational justice, trust and the management of change: An exploration. personnel Review32(3), 360-375. https://doi.org/10.1108/00483480310467660
  • Shah, N. (2011). A study of the relationship between organisational justice and employee readiness for change. Journal of Enterprise Information Management24(3), 224-236. https://doi.org/10.1108/17410391111122835
  • Skarlicki, D. P., & Folger, R. (1997). Retaliation in the workplace: The roles of distributive, procedural, and interactional justice. Journal of applied Psychology82(3), 434. https://psycnet.apa.org/buy/1997-06155-009
  • Su, Y., Ma, C., Chen, J., Wu, H., Luo, W., Peng, Y.,  & Li, H. (2020). Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Research Letters15, 1-34. https://doi.org/10.1186/s11671-020-03428-4
  • Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review61(4), 15-42. https://doi.org/10.1177/0008125619867910
  • Tao, K., Tzou, P. L., Nouhin, J., Gupta, R. K., de Oliveira, T., Kosakovsky Pond, S. L., & Shafer, R. W. (2021). The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics22(12), 757-773. https://doi.org/10.1038/s41576-021-00408-x
  • Thibaut, J. (1975). Procedural justice: A psychological analysis. Lawrance Erlbaum Associates. https://cir.nii.ac.jp/crid/1130000797754273408
  • Van den Bos, K., Lind, E. A., & Wilke, H. A. (2012). The psychology of procedural and distributive justice viewed from the perspective of fairness heuristic theory. Justice in the workplace, 49-66.
  • Viscelli, S. (2016). The big rig: Trucking and the decline of the American dream. Univ of California Press.
  • Walker, M., Fleming, P., & Berti, M. (2021). ‘You can’t pick up a phone and talk to someone’: How algorithms function as biopower in the gig economy. Organization28(1), 26-43. https://doi.org/10.1177/1350508420978831
  • Wilson, H. J., Daugherty, P. R., & Morini-Bianzino, N. (2018). The jobs that artificial intelligence will create. https://doi.org/10.7551/mitpress/11645.003.0020
  • Wood, A. J. (2021). Algorithmic management consequences for work organisation and working conditions (No. 2021/07). JRC Working Papers Series on Labour, Education and Technology. https://www.econstor.eu/handle/10419/233886
  • Yean, T. F. (2016). Organizational justice: A conceptual discussion. Procedia-Social and Behavioral Sciences219, 798-803. https://doi.org/10.1016/j.sbspro.2016.05.082

How to Cite

Shefali Sharma, Priyanka Sharma, and Rohit Sharma. The Influence of Algorithmic Management on Employees Perceptions of Organisational Justice – A Conceptual Paper. J.Technol. Manag. Grow. Econ.. 2024, 15, 31-40
The Influence of Algorithmic Management on Employees Perceptions of Organisational Justice – A Conceptual Paper

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print0976-545X
ISSN Online2456-3226
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.tmg@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Technology Management for Growing Economies(J.Technol. Manag. Grow. Econ.) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://tmg.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Technology Management for Growing Economies by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://tmg.chitkara.edu.in/

Members