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1. Introduction
Small and medium-sized enterprise (SME) lending 
fuels job creation and economic growth, but it remains 

vulnerable to high default risk and information asymmetry. 
Lenders have traditionally used scorecard models based 
on logistic regression for credit scoring, which are valued 
for their interpretability and compatibility with banking 
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regulatory guidelines. However, such linear models often 
underfit complex borrower behavior and may fail to 
capture nonlinear relationships in the data. In recent years, 
advanced machine learning techniques have been applied 
to credit risk, with gradient boosting algorithms emerging 
as top performers on tabular financial datasets due to 
their ability to capture nonlinear interactions efficiently. 
LightGBM offers fast training and high scalability, making 
it a leading choice for credit scoring tasks. The downside 
of these complex ensemble models is a lack of transparency 
decisions resulting from thousands of decision-tree splits, 
which are difficult to interpret for regulators and borrowers. 
Post-hoc explanation tools (e.g., SHAP) can provide insight 
into black-box models, but they add complexity and have 
limitations (such as instability under data distribution 
shifts). This opaqueness raises concerns about fairness and 
accountability in automated lending decisions; indeed, 
studies have found that stakeholders perceive algorithmic 
decisions as unjust if they cannot be explained. Regulators 
are increasingly demanding explainable AI in credit risk to 
ensure models are free from bias and compliant with lending 
regulations (e.g., fair lending laws and accounting standards 
like IFRS 9).

Recent advances in inherently interpretable machine 
learning offer a potential solution to this accuracy–
transparency trade-off. Models such as Explainable 
Boosting Machines (EBMs) produce predictions that are 
fully explainable while still leveraging machine learning 
patterns. Research indicates that these interpretable 
models can sometimes match the performance of black-
box ensembles for certain tasks. Nevertheless, large-scale 
empirical validations in the credit risk domain remain 
limited. Many prior studies on loan default prediction 
either use relatively small datasets (e.g., on the order of 10⁵ 
loans or less) or artificially balance the class distribution, 
and they typically focus on binary outcomes (default vs. 
non-default) without providing calibrated probability risk 
tiers. For example, a recent comparative study on loan 
approval used only ~150k records and oversampled defaults 
to balance classes, potentially distorting real-world default 
rates (Sinap, 2024). Other works evaluate ensemble models 
on imbalanced loan datasets but still frame the problem as 
binary classification, limiting their direct applicability to 
multi-tier risk management (Haque & Hassan, 2024). Few, 
if any, combine all the following in one framework:

•	 Training on nearly one million real loan records under 
natural class imbalance,

•	 Applying probability calibration to produce 
interpretable risk tiers, and

•	 Benchmarking a high-performance ensemble against 
an inherently explainable model.

1.1. Aim
This research aims to develop a practical and interpretable 
modeling framework that bridges predictive performance 
and transparency for SME loan default segmentation. 
Authors examine whether a calibrated LightGBM as 
a champion model, paired with an EBM challenger, 
can maximize predictive accuracy while meeting the 
transparency and compliance needs of lenders. The goal 
is to accurately classify loans into risk tiers (e.g., low, 
medium, high risk of default), while maintaining clarity 
in decision-making.

1.2. Objectives and Contributions
The contributions of this study are fourfold:

•	 Large-Scale Benchmarking: Authors critically evaluate 
the predictive performance of modern ensemble 
methods (specifically LightGBM) against traditional 
credit risk models (Logistic Regression, CART decision 
tree, Random Forest) and a Deep Neural Network 
(DNN) on the full SBA loan dataset (~899k loans). 
This represents one of the most extensive evaluations 
to date in SME credit scoring under realistic class 
imbalance.

•	 Calibration and Risk Tiering: Authors incorporate 
probability calibration (via isotonic regression) on the 
LightGBM model and determine optimal probability 
thresholds to categorize loans into Low, Medium, and 
High-risk tiers. These risk tiers are designed to align 
with operational and regulatory guidelines (mirroring 
IFRS 9 Stage 1/2/3 classifications for expected credit 
losses). This calibrated approach enables quantitative 
risk segmentation beyond a binary outcome.

•	 Interpretable Modeling: Authors investigate the 
Explainable Boosting Machine (EBM) as an inherently 
interpretable alternative to the ensemble. Authors 
show that EBM can achieve near-equal performance 
to LightGBM with full transparency, demonstrating 
a minimal “cost of explainability.” The EBM model’s 
additive nature allows us to identify global drivers of 
default risk and profile each risk tier with human-
understandable feature contributions.

•	 Practical Blueprint: Authors provide an end-to-end 
framework that runs on modest computing resources 
(all models trained in a dual-CPU environment). 
LightGBM trains in under 1 minute on CPU, enabling 
rapid re-training, while EBM though slower remains 
feasible. This showcases a deployable solution for 
community banks or lenders with limited infrastructure, 
balancing speed, accuracy, and interpretability. The 
resulting model stack offers a blueprint for integrating 
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advanced ML into credit risk management in a 
transparent, regulator-friendly manner.

In the remainder of this paper, Section 2 reviews related 
work in credit risk modeling and explainable AI. Section 3 
describes the data and preprocessing steps. Section 4 details 
the modeling approach, including model training, calibration, 
and evaluation methodology. Section 5 presents the 
experimental results, and Section 6 discusses the implications 
of these findings for theory and practice. Finally, Section 7 
outlines the limitations of this study, and Section 8 concludes, 
with Section 9 suggesting directions for future work.

2. Literature Review

2.1. Credit Scoring and Machine Learning
Credit risk assessment has long been a focus of operational 
research and finance, with early studies setting benchmarks 
for classification algorithms on loan default prediction 
tasks. For instance, Baesens et al. (2003) compared logistic 
regression with various machine learning classifiers for credit 
scoring, finding that non-linear models could yield better 
predictive accuracy. In industry, however, logistic regression 
remained dominant for decades due to its simplicity and the 
ease of interpreting odds ratios (scorecard points) in credit 
decisions. Over the last few years, there has been a surge in 
applying more powerful machine learning techniques to credit 
scoring problems as data availability and computing power 
have increased (Baesens et al., 2023). Ensemble methods 
like Random Forests and Gradient Boosting Machines have 
demonstrated superior performance over linear models in 
many credit datasets, including credit cards, mortgages, and 
peer-to-peer lending (Wong, Ganatra & Luo, 2024; Uddin 
et al., 2023). For example, in a recent study on consumer 
credit, a LightGBM model significantly outperformed logistic 
regression in terms of default prediction accuracy (Wong, 
Ganatra & Luo, 2024). Similarly, ensemble approaches 
(bagging and boosting) were found to reduce classification 
errors in bank loan approval predictions compared to single 
classifiers (Haque & Hassan, 2024; Uddin et al., 2023). These 
findings align with the broader machine learning literature 
where tree-based ensemble models often achieve state-of-
the-art results on structured data (Wong et al., 2024). Deep 
learning has also been explored for credit risk, but in practice 
neural networks have not consistently outperformed ensemble 
tree methods for tabular loan data (Hjelkrem & Lange, 2023). 
In our context of SME loans, authors include a DNN in the 
benchmark to assess its efficacy relative to other methods.

2.2. Class Imbalance and Risk Segmentation
A challenge in default prediction is the class imbalance 
typically only a small fraction of loans default, especially in 

portfolios dominated by performing loans. Prior academic 
studies often resort to oversampling or synthetic sampling 
of the minority class (default) to address this (Singh et al., 
2021; Sinap, 2024). While re-balancing can improve model 
training, it may distort the estimated absolute probability of 
default. Moreover, most studies frame the task as a binary 
classification (default vs. non-default), whereas in banking 
practice, multi-tier risk ratings are used to categorize loans 
by risk level (e.g., “performing”, “watchlist”, “default”). 
Accounting standards like IFRS 9 explicitly require banks 
to classify loans into stages reflecting increasing credit 
risk (Stage 1 for performing, Stage 2 for significantly 
deteriorated credit, Stage 3 for credit-impaired or default) 
(Jakubik & Teleu, 2025). Despite this, academic literature 
on credit scoring has largely not incorporated multi-tier 
risk segmentation, focusing instead on binary outcomes 
or on predicting a continuous risk score. A rare example in 
public literature is the study by Noriega et al. (2023), which 
discussed calibrated probability banding, but even there the 
analysis was limited. Our work addresses this gap by using 
calibrated model outputs to create three discrete risk tiers, 
providing a more nuanced risk categorization that aligns 
with industry practice in credit risk management.

2.3. Explainability and Regulatory Compliance
The use of complex machine learning models in credit 
risk brings challenges in explainability and compliance. 
Financial regulators and lending institutions require that 
credit decisions be explainable, not only for ethical and legal 
reasons (e.g., to avoid discrimination) but also for sound risk 
management (Bone-Winkel & Reichenbach, 2024). Black-
box models, if unexamined, could inadvertently incorporate 
biases or erratic behavior. Prior studies have applied post-
hoc explanation methods to interpret credit risk models. For 
instance, Hjelkrem and Lange (2023) used SHAP (SHapley 
Additive exPlanations) to interpret a deep learning credit 
scoring model, identifying which features drove predictions. 
While such tools can highlight important features for 
individual predictions, they do not fully resolve the 
transparency issue the underlying model remains complex, 
and these explanations can be difficult for non-technical 
stakeholders to interpret. A complementary approach is to 
use inherently interpretable models. Generalized additive 
models and explainable boosting are gaining attention as 
they offer a balance between complexity and interpretability 
(Nori et al., 2019). Explainable Boosting Machine (EBM), 
proposed by Lou, Caruana and collaborators, is an ensemble 
of shallow bagged trees that produces a model equivalent to 
a generalized additive model with shape functions learned 
from data. EBMs have achieved performance close to that of 
full-complexity models in some domains, while remaining 



p.4Rao et al., J. Technol. Manag. Grow. Econ., Vol. 16, No. 2 (2025)

fully transparent (Černevičienė & Kabašinskas, 2024; Do 
et al., 2024). In credit risk management, recent research 
demonstrates that interpretable models (such as EBM 
or monotonic gradient boosting) can satisfy regulatory 
requirements without substantial loss in predictive power 
(Bone-Winkel & Reichenbach, 2024; Dessain et al., 2023). 
Our study builds on these insights by directly comparing 
a state-of-the-art boosting model (LightGBM) with an 
interpretable model (EBM) on a large-scale credit dataset. 
Authors extend the comparison to consider not just 
performance metrics, but also calibration and the ability to 
produce risk-tier outputs that can be utilized in an IFRS 9–
compliant expected loss framework.

In summary, the literature suggests that ensemble 
models should significantly improve predictive accuracy 
for loan defaults, but their adoption in practice hinges on 
addressing interpretability and compliance challenges. No 
prior work, to our knowledge, has concurrently delivered 
state-of-the-art predictive accuracy on a large imbalanced 
loan dataset and intrinsic interpretability aligned with 
multi-tier risk segmentation. This study contributes to 
filling that gap by integrating calibrated LightGBM and 
EBM models into a unified framework for SME loan default 
risk stratification.

3. Data and Methodology

3.1. Data and Preprocessing
Authors utilize the publicly available SBA loan database, 
which contains records of loans granted or guaranteed 
by the U.S. Small Business Administration over a 45-
year period (approximately 1970–2014). After cleaning 
and consolidation, our dataset comprises 899,164 loan 
observations, each with features describing the borrower, 
loan terms, and outcome. Key features include loan amount, 
interest rate, term (months), borrower’s industry, years in 
business, and indicators of credit history or delinquency. 
The target variable is whether the loan eventually defaulted 
(Default = 1) or was paid in full (Default = 0). The raw 
class distribution is highly imbalanced: roughly 17.5% 
of loans in the dataset defaulted, while 82.5% were non-
default (performing) loans. Authors preserved this natural 
imbalance in model training to reflect real-world conditions 
(no oversampling or downsampling was applied).

All data were preprocessed with standard steps. 
Continuous variables (e.g., income ratios, interest rate) 
were checked for outliers and winsorized where necessary to 
reduce the influence of extreme values. Categorical variables 
(such as industry sector and state) were one-hot encoded 
or target-encoded depending on cardinality. Missing values 
were minimal in the dataset; where present, they were 

imputed with the mean (for continuous features) or the 
mode (for categorical features) as appropriate. To prevent 
data leakage, imputation and any normalization were 
fitted on the training set only and applied to the test set. 
Authors also explored feature selection techniques to gauge 
their impact on model performance. They tested a variance 
threshold method (dropping near-constant features) and a 
tree-based feature importance filter (dropping features with 
negligible importance in an initial Random Forest model). 
The effect of these feature selection methods on model 
performance was found to be minor, so our final models use 
the full feature set of 37 input variables.

Since our goal is to produce risk tiers (Low/Medium/
High risk), one challenge is that the dataset does not 
explicitly label loans as medium-risk or high-risk; it only 
provides a binary outcome. Authors address this by first 
building a binary default prediction model and then 
applying a probability-based segmentation to derive three 
risk classes. They set aside a portion of data for testing and 
model evaluation. Specifically, the dataset was randomly 
split into a training set (80% of loans, ~717k observations) 
and a hold-out test set (20%, ~180k observations). Model 
training and internal validation (including hyperparameter 
tuning and calibration) were performed on the training 
set. The hold-out test set was reserved strictly for final 
performance evaluation to ensure an unbiased assessment 
of each model.

4. Modeling Techniques
Authors benchmark six classification models, covering both 
traditional and state-of-the-art machine learning approaches:

•	 Logistic Regression (Baseline): A standard logistic 
regression with L2 regularization (to prevent overfitting 
given the large number of loans). This represents the 
traditional linear credit scorecard approach (Baesens et 
al., 2003). Features were standardized for this model, 
and an elastic-net penalty parameter was tuned via 
cross-validation.

•	 CART Decision Tree: A single decision tree classifier 
(Classification and Regression Tree) was trained to serve 
as a simple non-linear baseline. They pruned the tree to 
a maximum depth of 6 to avoid overfitting and allow 
some interpretability. The Gini impurity criterion was 
used for splitting.

•	 Random Forest: An ensemble of 100 decision trees 
(bootstrap aggregating). The forest was built with depth 
not explicitly limited (nodes split until a minimum of 5 
samples per leaf ), using Gini impurity and sqrt feature 
sampling per split. Random Forests often perform 
well in credit scoring tasks by capturing non-linear 
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interactions (Breiman, 2001). They included it as a 
robust traditional ensemble baseline.

•	 Deep Neural Network (DNN): A feed-forward 
neural network was implemented with two hidden 
layers (128 and 64 neurons, respectively) and ReLU 
activation. They employed dropout regularization 
(rate 0.2) to mitigate overfitting. The network was 
trained with the Adam optimizer and early stopped 
on validation loss. This represents a deep learning 
approach to capturing complex patterns. The 
architecture and training were constrained by the need 
for relatively quick training (authors found a larger 
network yielded marginal gains but at significantly 
higher training cost).

•	 LightGBM (Gradient Boosting Machine): The 
LightGBM model is a gradient boosting framework 
using tree-based learners (Ke et al., 2017). They used 
the LightGBM implementation with 500 boosting 
iterations (trees), a learning rate of 0.05, maximum 
tree depth of 7, and early stopping based on validation 
AUC. These hyperparameters were tuned via a small 
grid search on the training set. LightGBM’s built-in 
categorical handling was leveraged for certain features. 
This model is expected to provide the highest raw 
predictive performance based on prior studies (Wong 
et al., 2024; Uddin et al., 2023).

•	 Explainable Boosting Machine (EBM): They 
trained an Explainable Boosting Machine using the 
InterpretML library (Nori et al., 2019). The EBM was 
configured with 32 inner bags and a maximum of 256 
splits per feature (these are default settings aimed at 
balancing accuracy and generalization). EBM produces 
an additive model: the prediction is the sum of learned 
shape functions for each feature plus an intercept. This 
yields intrinsic interpretability, as one can inspect the 
contribution of each feature to the prediction. They 
tuned the learning rate of the EBM (around 0.01) 
to optimize performance. Unlike the other models, 
which output a single probability for default, EBM 
can directly output a probability through its calibrated 
sigmoid link function.

All models were trained in Python using well-known 
frameworks (Scikit-learn for logistic, tree, and forest; 
TensorFlow/Keras for the DNN; LightGBM library; and 
Microsoft’s InterpretML for EBM). Training was done in a 
commodity environment (Google Colab with 2 vCPU and 
13 GB RAM) to simulate resource-constrained deployment. 
Notably, the entire modeling pipeline (data loading, 
preprocessing, and LightGBM training) executes in under 1 
minute on this hardware, underscoring the practicality of the 
approach for real-world lenders with limited infrastructure.

4.1. Probability Calibration and Risk Tier 
Definition
An important component of our framework is probability 
calibration. Tree-based ensemble models like LightGBM 
often produce predicted probabilities that are not perfectly 
calibrated (the confidence values may not reflect true default 
likelihoods, tending to be over- or under-confident). To 
align predictions with real-world default rates (which is 
essential for risk tiering and IFRS 9 compliance), authors 
applied an isotonic regression calibration on the LightGBM 
output probabilities. Specifically, they held out 10% of the 
training data as a calibration set; after training LightGBM 
(which optimizes primarily for ranking/AUC), they refit its 
probability outputs on this calibration subset using isotonic 
regression to obtain a calibrated probability estimate for each 
loan. This technique ensures that, for example, among loans 
that LightGBM assigns ~50% probability, roughly 50% are 
observed to default (Zadrozny & Elkan, 2002). The logistic 
regression, DNN, and EBM models inherently produce 
probabilistic outputs (EBM, being an additive logistic 
model, tends to be reasonably well-calibrated by design), but 
for consistency they also checked and found their calibration 
to be acceptable; thus, they focused calibration efforts on 
LightGBM as it was our primary probability estimator.
With calibrated default probabilities in hand, they defined 
three risk tiers:

•	 Low Risk: Loans with predicted probability of default 
below a lower threshold . These are loans deemed to 
have low default risk.

•	 Medium Risk: Loans with predicted probability of 
default between and a higher threshold . These represent 
a moderate risk of default.

•	 High Risk: Loans with predicted probability of default 
above . These are flagged as high likelihood of default.

Threshold selection was guided by two considerations:

•	 Domain expertise and regulatory convention, and
•	 Data-driven distribution of predicted probabilities.

In the absence of an established industry threshold, authors 
chose such that approximately the top 5% of loans by 
predicted risk fell into High Risk, and such that around the 
next 15% fell into Medium Risk. This resulted in in terms 
of predicted probability. These cut-offs yielded intuitive 
results: about 80% of loans were labeled Low Risk, ~15% 
Medium, and ~5% High. When they examined the observed 
default rates for each tier in the test set, they were: Low Risk 
~2.46% default rate, Medium Risk ~48.8% default rate, 
High Risk ~89.7% default rate. In other words, loans that 
our model categorized as High Risk almost 90% of the time 
ended up defaulting effectively identifying the truly high-
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risk borrowers. Medium Risk loans defaulted about half the 
time, indicating a substantially elevated risk relative to Low 
Risk, but not as extreme as the High-Risk group.

These tier default rates align qualitatively with IFRS 9 
expectations: Stage 1 assets default at only a very low rate 
(a few percent), Stage 2 assets have significantly heightened 
risk, and Stage 3 are essentially defaults (100% or near) 
(Jakubik & Teleu, 2025). Authors note that the Medium 
Risk category in our data is an approximation (since 
actual loans were not labeled as “medium” risk by SBA) 
it effectively captures loans which did not default but had 
higher default likelihood than the typical performing loan. 
This construct is useful for portfolio risk management 
(allowing a “watchlist” category), though it requires careful 
interpretation (see Section 7 on limitations).

4.2. Evaluation Metrics and Validation
Authors evaluated model performance on the hold-out test 
set using several metrics:

•	 ROC AUC (Area Under the Receiver Operating 
Characteristic Curve): This measures the ability of 
the model to rank-order loans by risk. It is threshold-
independent and is a primary metric for credit scoring 
models (Baesens et al., 2003). AUC ranges from 0.5 (no 
better than random) to 1.0 (perfect rank separation).

•	 Accuracy: The overall classification accuracy (with 
a 0.5 probability cutoff for default vs. non-default). 
This gives the percentage of loans correctly classified 
as default or non-default. However, accuracy can be 
misleading on imbalanced data, so they interpret it 
alongside other metrics.

•	 Macro F1 Score: They compute the F1 score for the 
default class and the non-default class and take the 
average (macro-F1). This treats both classes equally and 
is sensitive to class imbalance, offering a balanced view 
of performance. F1 is the harmonic mean of precision 
and recall.

•	 Recall (Sensitivity) for the Default class: Also known 
as “Default Recall” in our context the proportion of 
actual defaulted loans that were correctly predicted 
(or flagged) by the model. This is a crucial metric for 
lenders, as it reflects how well the model catches bad 
loans (a low recall means many defaults would sneak 
through as approved).

•	 Precision for the Default class: While often 
considered, this is the proportion of loans predicted as 
default that did default. This reflects how “clean” the 
high-risk flags are.

For the multi-tier classification, authors report confusion 
matrices and tier-wise performance (e.g., what fraction of 

actual defaults fell into High vs. Medium, etc.), but since 
the medium tier is a derived category, they primarily focus 
on the calibrated probabilities and their alignment with 
outcomes rather than treating it as a separate ground-truth 
class.

Model selection and hyperparameter tuning were 
performed via cross-validation on the training set. The 
LightGBM and EBM models were primarily optimized 
for ROC AUC. Authors also monitored calibration (via 
calibration plots) to ensure the LightGBM + isotonic 
pipeline was yielding well-calibrated probabilities. All 
results reported in the next section are on the unseen test 
set, simulating how the models would perform on new loan 
applications.

5. Results

5.1. Overall Model Performance
Table 1 summarizes the performance of all six models on the 
test set across key metrics. LightGBM achieved the highest 
discriminative performance with an AUC of 0.9688, setting 
a new benchmark in our comparison. It also attained a high 
accuracy of 91.4% and the best macro-F1 score (0.867). 
Most importantly, LightGBM was able to recall 91.3% 
of defaulting loans, meaning it correctly identified over 
91% of the loans that eventually defaulted (not necessarily 
labeling them as “High Risk” in the tier framework yet, but 
at least ranking them above the 0.5 probability threshold 
for default). This high recall is critical for minimizing credit 
losses, as it suggests the model would catch most of the bad 
loans before funding.

EBM was the next-best model in terms of AUC, 
achieving 0.9632 (only a 0.0056 absolute drop from 
LightGBM, approximately 0.6 percentage point lower). 
In fact, EBM slightly exceeded LightGBM in accuracy 
(93.3% vs. 91.4%) on the binary classification and had a 
very respectable macro-F1 of 0.856. EBM’s default recall 
was 83.0%, lower than LightGBM’s but still substantially 
higher than any of the traditional models. The precision for 
default predictions with EBM was higher than LightGBM’s, 
reflecting its more conservative identification of high-risk 
loans (this is also reflected in EBM’s higher threshold when 
using a 0.5 cutoff due to better calibration). Overall, EBM’s 
performance is remarkably close to LightGBM’s, confirming 
that authors can obtain almost best-in-class accuracy and 
interpretability simultaneously. This finding is consistent 
with research that found only a small “cost of explainability” 
in terms of predictive power for interpretable models 
(Dessain et al., 2023).

Among the other models, the Random Forest also 
performed strongly, with AUC 0.943 and accuracy 
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approximately 91.1%. It recalled about 70.2% of defaults. 
The Random Forest benefited from ensemble averaging and 
captured non-linear patterns, outperforming the single CART 
tree by a large margin. The CART decision tree, in contrast, 
had one of the lowest AUCs (0.814) and struggled with recall 
(34.2%), which is expected given its limited depth and lack 
of ensemble effect. The logistic regression model yielded 
AUC 0.825, slightly higher than CART but still far below 
the ensemble methods, and default recall under 37%. This 
highlights the danger of relying solely on traditional scorecards: 
in our data, a simple logistic model would miss nearly two 
out of three defaulting loans (recalling only 36.9%). This gap 
between logistic regression and boosting (almost 14 percentage 
points in AUC) underscores how much predictive signal the 
linear model fails to capture, echoing earlier findings in credit 
scoring where non-linear models significantly outperformed 
logistic regression (Baesens et al., 2003).

The Deep Neural Network achieved an AUC of 0.947, 
which is high and on par with Random Forest and only slightly 
below EBM. It also had an accuracy around 90.0% and a 
macro-F1 of 0.861. However, DNN’s default recall (78.1%) 
lagged behind LightGBM and slightly behind EBM. During 
development authors observed that DNN, while expressive, 
was harder to calibrate and tune on this tabular data, and 
small changes in hyperparameters or random initialization 
led to variability in performance. Ultimately, DNN did not 
outperform the much faster LightGBM, consistent with 
observations that tree ensembles often rival deep networks 
for structured datasets (Hjelkrem & Lange, 2023). Given the 
DNN took significantly longer to train (several minutes even 
with a simple architecture) and provided no interpretability 
advantages, it may not be an attractive choice for this problem 
compared to boosting or EBM.

Table 1: Test Set Performance of Various Models for Default 
Prediction (binary classification of default vs. non-default)

Model AUC Acc Macro-F1 Default 
Recall

Train 
time 
(min)

Logistic Reg. 0.825 0.724 0.652 0.369 16.0

CART (Tree) 0.814 0.711 0.640 0.342 0.2

Random 
Forest

0.943 0.911 0.854 0.702 2.4

Deep Neural 
Network

0.947 0.900 0.861 0.781 35.0

LightGBM 0.969 0.914 0.867 0.913 0.65

EBM 
(Interpretable)

0.963 0.933 0.856 0.830 75.0

Note: LightGBM provides the highest ROC-AUC and default 
recall, while EBM achieves the highest overall accuracy with only 

a slight AUC reduction, offering a more interpretable alternative. 
All values are rounded to three decimal places. Default Recall = 
sensitivity on the default class. Training time is approximate on 
dual vCPU.

Several observations can be made from Table 1. First, 
modern ensemble methods (LightGBM, Random Forest) 
dramatically improve predictive performance relative to 
legacy approaches (logistic regression, single tree). The 
improvement in AUC from 0.825 (logistic regression) 
to 0.969 (LightGBM) is about plus seventeen percent 
(absolute). In practical terms, this could translate to a lender 
identifying many more risky loans in advance, avoiding 
potential defaults. This result is consistent with findings 
in other credit contexts that tree-based ensembles capture 
complex interactions that logistic regression misses (Wong  
et al., 2024). Second, EBM’s strong performance is 
encouraging for advocates of explainable AI. With only 
approximately 0.6 percentage points lower AUC than 
LightGBM, the EBM demonstrates that authors do 
not necessarily have to sacrifice much accuracy to gain 
interpretability. The fact that EBM slightly exceeds 
LightGBM in accuracy suggests it may be calibrated 
differently or strikes a different precision-recall balance; 
EBM had fewer false positives (non-defaults predicted as 
default), hence higher accuracy, whereas LightGBM captures 
more defaults at the expense of additional false alarms. 
Depending on an institution’s objectives, either approach 
may be preferable: LightGBM for maximal risk detection, 
EBM for a balanced and regulation-friendly model.

It is also worth noting that training times differ 
greatly. As shown in Table 1, training the EBM model took 
roughly 75 minutes on our CPU setup, compared to under 
1 minute for LightGBM. The Random Forest took about 
2.4 minutes, and the logistic and CART models were nearly 
instantaneous. The DNN training took approximately 35 
minutes (including hyperparameter tuning epochs).

These numbers highlight a trade-off in computational 
efficiency: LightGBM not only produced the best 
predictions but did so with the shortest training time (due to 
its efficient histogram-based algorithm and early stopping), 
whereas EBM required significantly more computation 
for only a slightly lower AUC. This implies that if rapid 
retraining or model updates are needed (for example, in 
dynamic economic conditions), the LightGBM model is far 
more convenient. EBM’s training speed may be improved 
with more computing resources or future algorithm 
optimizations, but currently it stands as a limitation for very 
fast iteration. That said, inference with EBM (scoring new 
loans) is extremely fast, on the order of milliseconds per 
loan, so the main penalty is in retraining, not deployment 
speed.
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5.2. Calibrated Risk Tiers and Default 
Segmentation
Using the calibrated LightGBM model, authors categorized 
each test loan into Low, Medium, or High-risk tiers based 
on the probability thresholds and . This allows us to evaluate 
how well the model’s probability estimates translate into 
meaningful risk groupings. The distribution of loans and 
their observed outcomes in each tier are as follows:

•	 Low Risk Tier: About 80.5% of the test loans fell into 
Low Risk (predicted default probability below ~0.20). 
As expected, most of these loans did not default. 
Specifically, only 2.46% of Low-Risk loans ended up 
defaulting (i.e., 97.5% were performing). This default 
rate is very close to the model’s predicted probabilities 
for that group, indicating good calibration. It also 
aligns with typical loss rates for high-quality SME 
portfolios. Many of these loans likely had strong 
borrower characteristics (e.g., longer time in business, 
lower leverage, etc.).

•	 Medium Risk Tier: Roughly 14.0% of test loans were 
classified as Medium Risk (probability between ~0.20 
and ~0.80). This tier had an observed default rate of 
48.8%. In other words, about half of the loans the 
model marked as Medium Risk defaulted. The other 
half did not default but were deemed risky by the model. 
This tier can be thought of as a “gray zone”: loans that 
are not guaranteed to fail but have significant issues 
elevating their risk. In practice, lenders might handle 
such cases with caution, e.g., requiring additional 
collateral, higher interest rates, or closer monitoring. 
The model’s ability to identify this middling group is 
valuable for preemptive risk management (Medium-
Risk loans might be candidates for intervention or 
restructuring before they turn bad).

•	 High Risk Tier: Approximately 5.5% of loans were 
flagged as High Risk (predicted probability above ~0.80). 
Strikingly, 89.7% of these loans defaulted. This confirms 
that the model’s high-risk identification is very accurate, 
nearly 9 out of 10 loans it put in the High-Risk bucket 
did fail. Conversely, only ~10% of loans in this bucket 
were false positives (predicted High Risk but repaid). 
Those few false positives might correspond to loans where 
mitigating circumstances led to survival despite their risk 
profile or simply random variation. The High-Risk tier 
essentially captures the loans that a traditional model or 
human underwriter would almost certainly decline. In 
IFRS 9 terms, this tier corresponds to credit-impaired 
accounts where full loss provisioning is often required.

From a regulatory compliance perspective, these results 
are encouraging. The calibrated probabilities produce a 

monotonic relationship with outcomes (higher predicted risk 
= higher observed default rate), which is exactly what is needed 
for IFRS 9 staging and capital allocation. A known challenge 
in risk modeling is ensuring that predicted risk segments align 
with real default frequencies, our model primarily achieves 
that alignment. This means a bank could use the model 
outputs to inform its provisioning: for instance, Stage 1 
loans (Low Risk) might carry only 12-month expected losses 
given their low default expectations, Stage 2 loans (Medium 
Risk) might trigger lifetime expected loss calculations, and 
Stage 3 (High Risk) would be heavily provisioned as they are 
essentially non-performing. The Medium tier’s ~50% default 
rate suggests that some loans that ultimately did not default 
were still flagged. In practice, this is not necessarily a problem, 
it may indicate that those loans required closer management 
or had curing events (e.g., delinquent but then recovered). 
The model provides a quantitative basis to differentiate such 
loans from truly safe ones.

Authors also evaluated risk tier recall: of all actual defaults 
in the test set, 91.3% were either in Medium or High Risk 
(with 83.1% in High Risk alone, and an additional 8.2% 
captured in Medium Risk). This corresponds exactly to the 
LightGBM default recall reported (since anything above 
0.5 probability is at least Medium). Essentially, the model 
captured over 91% of defaults by flagging them as elevated 
risk, leaving under 9% of defaulters misclassified as Low 
Risk. Those missed defaults are cases where the borrower 
might have appeared low risk but eventually defaulted due to 
unforeseen factors, such instances are extremely challenging 
to predict and represent the residual risk in the system. Still, 
catching 91% of defaults is a significant improvement over 
the ~37% captured by logistic regression. It demonstrates 
the benefit of modern ML in early warning of credit events.

5.3. Feature Importance and Global 
Explanations
The EBM model inherently provides global feature 
importance as a byproduct of its training (often measured 
by the weight of each feature’s contribution in the additive 
model). In this subsection, authors highlight the top factors 
that the models identified as drivers of default risk, and 
authors cross-reference these with financial intuition.

According to EBM’s global explanation (Figure 1), the 
most influential features for predicting default were Term, 
GrAppv (Gross Amount of Loan Approval by Bank), and 
SBA_Appv (SBA Approval Amount). Each of these makes 
intuitive sense:

•	 Loan Term: Longer-term loans generally carry higher 
uncertainty, increasing default probability due to 
prolonged economic exposure and uncertainty around 
borrowers’ future financial health.
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•	 Gross Approval Amount (GrAppv): Its prominence 
highlights the critical role loan size plays in risk 
evaluation. Larger approved amounts often receive 
stringent vetting, potentially reducing default 
likelihood, but simultaneously, higher exposure can 
amplify risk under adverse economic conditions.

•	 SBA Approval Amount (SBA_Appv): Its interaction 
terms with Loan Term indicate a strong interplay. This 
reflects practical credit-risk scenarios where SBA-backed 
loan guarantees partially mitigate lender risk, yet extended 
repayment schedules could still escalate borrower default 
risk, underscoring a nuanced lending dynamic.

Figure 1: Top 15 features in EBM & Interaction Importances

Notably, the interaction terms especially between Term 
and SBA_Appv and between Term and GrAppv indicate 
significant dependencies. These interactions suggest that 
longer-term loans accompanied by either large gross 
approvals or substantial SBA backing exhibit distinct risk 
profiles, reinforcing the importance of combined rather 
than isolated feature analyses.

Another feature worth highlighting is Disbursement 
Gross Amount, representing the actual loan amount 
delivered. Its substantial role underscores that actual 
disbursement, rather than the approved amount alone, 
significantly impacts risk assessment. Lower disbursement 
relative to the approved amount may indicate borrower 
caution or changing financial circumstances, thereby 
influencing the probability of default.

The appearance of categorical variables relating to 
borrower location (UrbanRural) further reinforces regional 
socioeconomic factors as influential components in loan 
default probabilities. Urban and rural distinctions potentially 
reflect underlying market dynamics such as borrower 
demographics, economic opportunities, or regional industry 
stability, all of which critically shape default risks.

In summary, both the black-box and interpretable 
models identified sensible drivers of default risk, and the 
calibrated risk tiers clearly stratify the loan portfolio by 
increasing risk. This demonstrates the framework’s ability 
to not only predict outcomes accurately but also provide 
explanations and groupings that finance professionals can 
understand and act upon.

While LightGBM is a black-box model, authors can 
derive some insight into what it has learned by examining 
feature importance (Figure 2).

Like EBM, LightGBM identifies loan Term as the 
dominant predictor, with an important measure exceeding 
6,000 units (in terms of gain). This reinforces its central role 
across models and confirms theoretical expectations of term 
duration as a core driver of default. SBA approval amount 
(SBA_Appv) and Disbursement Gross continue as essential 
predictive features, solidifying their significance across 
methods.

The variable importance hierarchy also includes 
Number of Employees (NoEmp) and job retention metrics 
(RetainedJob). These variables indicate that organizational 
size and employment stability significantly influence default 



p.10Rao et al., J. Technol. Manag. Grow. Econ., Vol. 16, No. 2 (2025)

probability, as larger, more stable businesses typically exhibit 
lower default rates due to better financial resilience and 
operational robustness.

Categorical indicators such as RevLineCr (revolving 
line of credit status), UrbanRural, LowDoc, and business 
existence status (NewExist) appear prominently in 
LightGBM’s top predictors. Their inclusion highlights the 
nuanced impacts of business operations, documentation 

quality, credit structure, and geographic location on loan 
outcomes, corroborating the complexity of real-world 
credit-risk evaluation.

The calibrated LightGBM (Figure 3) predictions 
facilitate a pragmatic three-tiered risk segmentation: Low, 
Medium, and High risk. Empirical validation shows clear 
differentiation between the tiers, each possessing distinct 
default characteristics:

Figure 2: Top 15 Features in LightGBM

•	 Low-Risk Tier represents approximately 78.5% of 
tested loans (139,661 loans), with an observed default 
rate of only 2.46%. This tier’s extremely low default 
probability confirms the model’s efficacy in confidently 
isolating stable borrowers. Lending institutions can 
leverage this tier to streamline approvals, offering 
competitive interest rates to reliably identified low-risk 
customers, thus enhancing market competitiveness and 
operational efficiency.

•	 Medium-Risk Tier comprising about 8% of the test 
portfolio (14,394 loans), presents a substantially 
elevated default rate of 48.76%. This intermediate 
segment warrants cautious credit management and 
more rigorous monitoring strategies. Given the nearly 

equal likelihood of default and non-default, credit 
interventions here could involve closer financial 
scrutiny, supplemental collateral requirements, or 
tailored financial counseling services.

•	 High-Risk Tier consisting of roughly 13% of 
the tested population (23,228 loans), records an 
alarmingly high default rate of 89.68%. Loans in 
this category represent significant financial risk 
and demand stringent lending policies, including 
higher interest rates, restrictive terms, reduced 
approved amounts, or outright rejections. Targeting 
such borrowers with tailored recovery planning or 
preemptive intervention measures could significantly 
mitigate financial losses.
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Figure 3: Calibrated LightGBM results

The marked default-rate discrepancies between these tiers 
underline the calibrated LightGBM’s ability to effectively 
discriminate loan outcomes. The empirical risk lifts over five 
times in the high-risk tier and approximately 2.8 times in 
the medium-risk tier, strongly confirm the practical utility 
of tier-based segmentation for credit-risk management.

6. Discussion

6.1. Interpretation of Findings
Using nearly 900k historical SBA loans, this study 
demonstrates that a calibrated LightGBM model, coupled 
with an EBM challenger, can achieve state-of-the-art 
predictive accuracy while retaining transparent, explainable 
insights. The LightGBM–EBM model stack effectively 
addresses the research questions posed: it significantly 

outperforms traditional models in default prediction (Q1), 
it provides a method to categorize loans into intuitive 
risk tiers using calibrated probabilities (Q2), and it offers 
interpretability through EBM and feature importance 
analysis (Q3). The result is a practical win-win: authors get 
the best of both worlds – the predictive power of ensemble 
learning and the interpretability of an additive model.

Our findings reinforce and extend the current literature. 
Consistent with prior studies, authors found that ensemble 
methods (gradient boosting, random forests) greatly surpass 
logistic regression in predictive performance for credit risk 
(Wong et al., 2024; Uddin et al., 2023). The magnitude 
of improvement (AUC ~0.97 vs ~0.82) aligns with what 
Haque and Hassan (2024) observed on a smaller bank loan 
dataset, affirming that these techniques scale effectively 
to larger samples. Moreover, by applying these models to 
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an imbalanced dataset without class resampling, authors 
showed they can handle real-world default ratios and still 
perform robustly addressing a gap where many academic 
works artificially balance data (Sinap, 2024).

The LightGBM model’s recall of over 91% of defaults at 
a 5% false-positive rate (High-Risk tier size) is an impressive 
outcome, suggesting that lenders could substantially reduce 
unexpected losses by deploying such a model for screening. 
In practical terms, this could improve the portfolio’s credit 
quality and reduce loan loss provisions, as fewer bad loans 
are approved.

Perhaps the most novel aspect of our results is the 
demonstration that an interpretable model (EBM) can 
closely match a leading black-box model. The EBM achieved 
about 99.4% of LightGBM’s AUC performance, confirming 
recent observations that the accuracy cost of interpretability 
can be minimal (Černevičienė & Kabašinskas, 2024; Do 
et al., 2024). This addresses a longstanding concern in 
credit analytics: more complex models might yield better 
predictions but at the expense of explainability, making them 
impractical or non-compliant (Binns et al., 2018). Here, 
authors empirically show that the trade-off is very small, an 
EBM could be an attractive alternative for institutions that 
prioritize transparency. The cost of explainability, in terms of 
predictive performance, was on the order of half a percentage 
point of AUC, which is negligible in many business contexts 
(Dessain et al., 2023). This finding is encouraging for 
regulators and model risk managers, as it indicates that using 
interpretable models does not necessarily entail significantly 
higher prediction error.

Another important implication is how probability 
calibration and risk tiering can bridge model outputs with 
business decision-making. By calibrating the LightGBM 
probabilities and defining risk thresholds aligned with IFRS 
9 stages, authors made the model’s output immediately 
actionable for risk management. Our Low/Medium/
High risk segmentation provides a tangible tool for credit 
officers, for example, loans predicted as High risk could be 
automatically flagged for decline or further review, medium 
risk loans could be approved with conditions or oversight, 
and Low risk loans fast-tracked. This multi-tier approach 
mirrors how banks manage credit risk (rather than treating it 
as a binary approve/decline decision only). It also integrates 
naturally with expected credit loss provisioning under IFRS 
9, where different stages have different reserve requirements 
(Stage 2 loans receive lifetime loss provisions even if they 
haven’t defaulted, due to significant risk increase). Our 
model effectively provides a data-driven way to assign loans 
to these stages. This contribution is practically significant: it 
shows that calibrated machine learning outputs can satisfy 
regulatory frameworks, something often missing in pure 
ML studies.

The findings also highlight the feasibility of 
implementing advanced models in resource-limited 
settings. Even though the EBM took longer to train, the 
fact that LightGBM (the champion model) can be trained 
in under a minute on CPU implies that even small lending 
institutions (like community banks or fintech startups 
with limited infrastructure) could adopt this approach. 
Frequent re-training (e.g., monthly model updates with 
new data) is very attainable with LightGBM. This addresses 
a common concern that sophisticated models are only 
feasible for large banks with high-performance servers or 
GPUs. We’ve demonstrated that the “whole pipeline in 1 
minute” (LightGBM case) is possible. This democratization 
of credit analytics technology is an important consideration 
for industry uptake.

6.2. Comparison with Related Work
Compared to prior work, our study distinguishes itself in 
several ways. Many earlier studies on loan default prediction 
either focused on binary classification or did not incorporate 
probability calibration into their evaluation. For instance, 
Uddin et al. (2023) built ensemble models for bank loan 
approval but stopped at measuring accuracy and F1, without 
translating probabilities into risk categories. Authors 
extend beyond this by producing a calibrated risk ranking 
that aligns with financial risk tiers. Other studies that did 
consider multiclass classification often pre-defined risk tiers 
from data (e.g., using delinquency status as proxy categories) 
rather than deriving them from model probabilities. Our 
approach, leveraging isotonic calibration, is more flexible 
and can adapt to the desired risk appetite or regulatory 
standards of a given institution.

In terms of interpretability, prior literature mostly added 
interpretability post-hoc (Hjelkrem & Lange, 2023 used 
SHAP, as did Li & Wu, 2023 in their loan default study). 
Our work is closer in spirit to recent research by Hjelkrem 
& Lange (2023) and Bone-Winkel & Reichenbach (2024), 
who emphasize explainable models. However, even those 
studies did not present a direct head-to-head comparison 
of an interpretable model versus an opaque one on the 
same data. Authors did so and quantified the performance 
gap, providing concrete evidence for practitioners debating 
between model choices. Additionally, our use of the EBM in 
the credit risk context adds to the small but growing body 
of evidence that EBMs are highly effective for financial risk 
tasks (Hjelkrem & Lange, 2023; Do et al., 2024).

The scale of our dataset (~900k loans) also sets this work 
apart. Many academic papers use much smaller datasets 
(e.g., the common LendingClub dataset has ~40k loans 
used in Wu, 2022; or smaller bank datasets around 100k 
records). By using the entire SBA corpus, authors could 
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validate the models in a more realistic, large-scale scenario. 
Encouragingly, LightGBM scaled effortlessly to this data 
size, and EBM also managed, though with longer training. 
This matters because credit portfolios at large banks easily 
run into millions of accounts, models must handle such 
scale.

Finally, from a theoretical standpoint, our results affirm 
certain machine learning principles in the context of credit 
risk: ensemble methods reduce variance and capture complex 
patterns (explaining LightGBM’s win), additive models can 
approximate ensemble performance if constructed cleverly 
(explaining EBM’s close second place), and calibration 
is crucial when decision thresholds have real meaning (to 
ensure predicted probabilities are interpretable as risks).

6.3. Practical Implications
The practical implications of this study are significant for 
financial institutions:

•	 Risk Management: The LightGBM–EBM framework 
provides a blueprint for integrated risk modeling. A bank 
can use LightGBM as a champion model for highest 
accuracy in automated underwriting while keeping an 
EBM or similar interpretable model in parallel for audit 
and compliance purposes. For instance, if a regulator 
questions why a particular loan was denied, the bank 
could refer to the EBM’s explanations (since EBM 
will generally agree on the major risk factors, given its 
similar performance). This champion–challenger setup 
could also be used in production: most decisions by 
LightGBM, but if EBM disagrees strongly or if a loan 
is borderline, route to manual review. Our study thus 
offers a template for model governance in the era of AI 
in credit.

•	 Regulatory Compliance: Banks can be confident 
that deploying a high-performing ML model need not 
violate explainability requirements like those implied 
by the EU’s GDPR or US fair lending regulations. 
By having an interpretable model nearly as good as 
the black box, they can satisfy “show me the reason” 
demands. Additionally, the IFRS 9 alignment authors 
demonstrated means model outputs can feed directly 
into accounting processes (e.g., calculating expected 
credit loss for each risk bucket). This linkage between 
AI models and accounting standards is a novel bridge 
that could streamline how risk analytics supports 
finance departments.

•	 Economic Benefits: Better default prediction and 
risk segmentation translate to lower loan losses and 
more efficient capital allocation. If a bank can more 
accurately identify high-risk loans, it can avoid funding 
them or price them appropriately (higher interest to 

compensate risk) and, conversely, not deny credit to 
low-risk borrowers who might have been misclassified 
by a weaker model. Thus, there’s a social benefit too: 
deserving small businesses might get credit because 
the model judged them accurately rather than being 
rejected by an overly conservative traditional scorecard. 
On the other hand, loans that truly are high-risk can be 
curtailed, protecting the bank’s portfolio and indirectly 
the financial system.

•	 Technology Adoption: From a technology perspective, 
our work suggests that even smaller banks or lending 
startups can adopt advanced ML techniques without 
needing expensive infrastructure. The use of open-
source libraries and standard computing environments 
lowers the barrier to entry. There’s an implicit 
suggestion that regulators and industry groups could 
promote such frameworks (perhaps open-source model 
pipelines pre-calibrated on large public data) to uplift 
risk management practices broadly.

7. Limitations
While the results are promising, this study has several 
limitations that warrant discussion:

•	 Proxy for Medium Risk: The definition of the 
“Medium” risk tier in our dataset is inherently a proxy, 
since the SBA data did not come labeled with multiple 
risk categories. Authors imposed a structure by splitting 
predicted probabilities. This means some loans in 
Medium Risk might be those that would have defaulted 
under slightly different conditions or just got lucky. It 
also means our medium category is somewhat subjective 
and depends on chosen thresholds. In practice, banks 
define risk grades using a combination of model output 
and policy judgment. Our results showed moderate 
precision and recall for the medium class (as it’s not 
a cleanly separable group), which is expected. Thus, 
while the three-tier scheme is illustrative and aligned 
with IFRS 9 conceptually, it’s not as ground-truth 
validated as the binary default labels. Users of such a 
model should supplement medium-risk identification 
with business rules or expert review.

•	 Model Training Time (EBM): The EBM model’s 
training was quite slow (~84 minutes on CPU for 
~900k samples). For a one-time analysis, this is fine, 
but it could be a bottleneck for rapid model updates or 
if using even larger data. In a production scenario, one 
might need a server with more cores or an optimized 
implementation to retrain EBM in a reasonable time. 
In contrast, LightGBM’s very short training time 
stands out; if an institution values agility (e.g., updating 
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the model frequently as new data arrives or as macro 
conditions change), LightGBM has a clear advantage. 
DNN training was also relatively slow (~5 minutes), 
and authors didn’t see gains from it, likely due to limited 
hyperparameter tuning under Colab constraints. It’s 
possible a more thoroughly tuned DNN could have 
performed better but given the computational cost and 
the already high performance of boosting, that route 
was less appealing.

•	 Feature and Data Limitations: Our analysis is only 
as good as the data. If there were any distortions (like 
policy changes capping interest rates or certain programs 
that skewed terms), the model might misinterpret 
those. Also, the data spans 45 years there could be non-
stationarity (the lending criteria of the 1970s versus 
2010s differ). Authors tried to mitigate this by not 
overly tuning to any specific year, but a more nuanced 
time-based validation could be explored. Additionally, 
SBA loans are a specific subset of SME finance (they 
often have government guarantees). This means default 
patterns might differ from unguaranteed loans e.g., 
perhaps risk-taking is different knowing a portion is 
guaranteed by SBA. If one naively applied our model 
to a private bank’s portfolio without recalibration, 
it might overestimate risk because it learned under 
an SBA regime. So, generalizability to all SME loans 
should be approached carefully.

•	 Fairness and Bias: Authors did not explicitly test for 
biases in the model. Attributes like race or gender of 
business owners were not in the dataset, but proxies 
(geography, industry, etc.) could inadvertently serve 
as correlates. Ensuring the model is fair and does not 
systematically disadvantage protected groups is crucial 
before deployment (Barocas, Hardt & Narayanan, 
2019). Future work will consider adding fairness 
metrics or constraints, especially since explainable 
models like EBM could be combined with fairness 
auditing to better understand any bias issues.

•	 Beyond Probability of Default: Authors focused on 
predicting default and aligning with IFRS 9 staging 
(which is PD-focused). However, credit risk assessment 
also involves Loss Given Default (LGD) and Exposure 
at Default (EAD) for a full picture of expected losses. 
Our study doesn’t address LGD implicitly, they assumed 
a default is a default, but in reality, severity matters 
(a default where the bank loses 10% of exposure vs. 
100% are different). Future extensions could consider 
a two-stage model (predict default, and if default, then 
predict loss fraction) or integrate into a portfolio loss 
simulation.

•	 Comparative Scope: Authors included a variety 
of models, but one could argue for even more e.g., 

CatBoost, XGBoost (another boosting), SVMs, or 
more exotic models. They chose a representative set 
covering most paradigms. XGBoost and CatBoost 
are likely to yield similar performance to LightGBM 
(perhaps slightly lower or higher depending on 
tuning) based on other research (Li & Wu, 2023 note 
LightGBM vs. XGBoost differences were minor). They 
picked LightGBM for its speed and known strong 
performance. So, while they may not have exhausted 
every algorithm, they doubt any would clearly beat 
LightGBM in this context by a large margin.

8. Conclusion
This study presented a comprehensive modeling framework 
for SME loan default prediction that bridges the gap 
between predictive performance and interpretability. 
By leveraging nearly 899,000 SBA loans, an unusually 
large dataset by academic standards, authors were able 
to rigorously evaluate a state-of-the-art ensemble model 
(LightGBM) against interpretable and traditional models. 
The results are compelling: LightGBM achieved a ROC-
AUC of 0.969 with over 91% recall of defaulting loans, 
substantially outperforming logistic regression and even 
a neural network. Meanwhile, the Explainable Boosting 
Machine (EBM) delivered almost matching performance 
(ROC-AUC 0.963) while providing full transparency into 
its decision-making. When calibrated and combined, this 
champion–challenger pair offers a powerful and practical 
solution for lenders: high-accuracy risk predictions that can 
be explained to stakeholders and regulators.

Authors also demonstrated how to derive meaningful 
risk tiers from the model’s probabilistic output, essentially 
constructing a three-tier credit risk rating system aligned 
with IFRS 9 stages. Loans were sorted into Low, Medium, 
and High risk with observed default rates of ~2.5%, ~49%, 
and ~90%, respectively, validating the model’s ability to 
separate the portfolio into distinct risk bands. This has direct 
applicability in credit risk management, enabling targeted 
interventions (e.g., heightened monitoring for the medium 
group, denial or special handling for the high group). The 
fact that the entire modeling pipeline can be executed on 
commodity hardware in under a minute (for LightGBM) 
also underscores the practicality of this approach for 
widespread adoption.

In conclusion, our work offers a blueprint for 
modernizing SME credit scoring: use gradient boosting 
for maximal predictive power and calibrate its outputs for 
risk segmentation; concurrently, maintain an interpretable 
model like EBM to ensure transparency and compliance. 
This approach marries the strengths of AI with the trust 
required in finance. Authors believe such frameworks can 
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drive the next generation of credit risk analytics, where 
“glass-box” performance (models that are both accurate and 
interpretable) becomes the norm. The LightGBM–EBM 
stack proposed here is a step in that direction, showing that 
lenders need not trade off accuracy for explainability. As the 
financial industry increasingly embraces machine learning, 
studies like ours help chart a path toward models that are 
not only powerful and efficient but also fair, accountable, 
and aligned with regulatory principles.

9. Future Work
The promising results of this study open several avenues for 
future research:

•	 Fairness and Bias Mitigation: A natural next step is 
to ensure the model’s decisions are unbiased. Future 
work could incorporate fairness metrics or constraints 
(e.g., equal opportunity, disparate impact analysis) into 
model training. Techniques like synthetic minority 
oversampling or adversarial debiasing could be tested 
to see if performance can be maintained while reducing 
any unwanted bias. Additionally, proxy features 
(like ZIP code or demographic indicators) could be 
introduced to explicitly audit the model’s fairness and 
apply mitigation strategies (such as reject option-based 
classification).

•	 Adversarial Robustness: As with any predictive model, 
especially one used in lending, adversaries might try to 
game the system (e.g., by manipulating input features 
to appear at low risk). Future research could evaluate 
the robustness of LightGBM and EBM to adversarial 
perturbations in data input. Methods to improve 
robustness, such as imposing monotonicity constraints 
(to ensure logically consistent behavior) or adversarial 
training (training on slightly perturbed data), could be 
investigated. Ensuring the model is not easily fooled is 
important for deployment.

•	 Macro-Economic Integration: The current model 
uses loan-specific features and inherently handles some 
macro conditions due to the time span of the data, 
but explicit integration of macroeconomic indicators 
could be valuable. Future models could incorporate 
variables such as GDP growth, unemployment rates, or 
other economic indices at the time of loan origination 
or during loan life. This would enable dynamic stress-
testing: assessing how portfolio default risk might 
change under different economic scenarios (similar to 
stress test frameworks in banking). Time-series models 
or scenario analysis could be layered on top of the PD 
model to simulate performance under recession versus 
expansion.

•	 Extension to Loss Given Default (LGD) Modeling: 
As mentioned in the limitations, predicting default 
is only one part of credit risk. Future research could 
pair the PD model with an LGD model for a more 
complete risk assessment. EBM or LightGBM could 
be used to predict LGD given default (using historical 
recovery data). Combining these, one could estimate 
expected loss for each loan, which is ultimately what 
banks need for capital allocation. Another angle is 
multi-task learning, where a single model predicts both 
probability of default and expected loss, though this 
can be complex.

•	 Real-Time Decision Support: Deploying this model 
in an interactive decision tool for loan officers is 
another potential direction. For example, an interface 
could take applicant data and return not just a score 
and tier but also an explanation (“Debt-to-Income is 
high, which contributes X% to risk, consider requiring 
a co-signer or reducing loan amount”). Usability 
studies could evaluate whether human decision-makers 
improve decision quality or consistency using these 
explanations.

•	 Comparative Studies with Other Explainable ML: 
While EBM was our choice for interpretability, other 
methods exist, such as Explainable Neural Networks 
(XNNs), GA2M (Generalized Additive Models with 
interactions), or even simpler rule-based classifiers. 
Future work could benchmark these on the same 
problem to see if any lighter-weight interpretable 
method can match EBM’s performance. Additionally, 
exploring SHAP or LIME not just for explanation 
but to create simplified surrogate models might be 
interesting, though surrogate models typically lose 
fidelity.

•	 Cross-Validation with Other Data: Testing the 
framework on different datasets (e.g., LendingClub 
data, mortgage datasets, or non-U.S. SME loans) would 
ensure robustness. Broad validation could confirm 
that the LightGBM–EBM approach generalizes across 
credit contexts, or indicate what adjustments (e.g., 
hyperparameter tuning, recalibration) are needed.

•	 Automated Machine Learning (AutoML): An 
AutoML approach could be applied to this problem, 
where the system searches over model architectures 
(including pre-processing and feature engineering) to 
see if any combination can exceed our manual approach. 
AutoML might discover interactions or transformations 
authors did not explicitly code. However, maintaining 
interpretability would be a challenge if the best model 
found is highly complex. Balancing AutoML with 
interpretability constraints could itself be a research 
topic.
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By addressing these future directions, researchers and 
practitioners can further enhance the reliability, fair-
ness, and utility of machine learning models in credit 
risk. The goal is a robust, transparent credit scoring 
system that stakeholders trust and that demonstrably 
improves financial outcomes. Our study lays a strong 
foundation, and authors anticipate continued advance-
ments built upon this work in the quest for better credit 
risk modeling.
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