Vol. 16, No. 2 (2025), pp.1-17

CHITKARA ﬂ Journal of Technology Management
UNIVERSITY for Growing Economies

Bridging Predictive Performance and Transparency: A Multi-Model Framework for Small-
Business Loan Default Segmentation

Minh Nguyen Hoang', Thota Sai Karthikeya® and Thota Sree Mallikharjuna Rao*

'Business Analyst, Joint Stock Commercial Bank for Foreign Trade of Vietnam (VCB), Block C, Alley 01/34, Phan Dinh Giot Street,
Thanh Xuan District, Hanoi City, Vietnam.

2School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Patia, Bhubaneswar,
Odisha 751024, India.

3Bunge India Pvt. Ltd., 11th Floor, F3 Tower, Quark City Landmark Plaza, A-40A4, Phase VIII Extension, Sector 75, Industrial Focal
Point, Mohali, Punjab 160059, India.

“tsmrao@mail.org (Corresponding Author)

RESEARCH ARTICLE Open Access

ARTICLE INFORMATION ABSTRACT

Received: October 22, 2025 Purpose: This research aims to develop a practical and interpretable modeling framework that
Accepted: November 20, 2025 bridges predictive performance and transparency for SME loan default segmentation. Authors
Published Online: December 24, 2025 examine whether a calibrated LightGBM as a champion model, paired with an EBM challenger,

can maximize predictive accuracy while meeting the transparency and compliance needs of

Keywords: lenders. The goal is to accurately classify loans into risk tiers (e.g., low, medium, high risk of
Loan prediction, Gradient boosting, Explainable default), while maintaining clarity in decision-making.

boosting machine, Probability calibration, Methods: For the multi-tier classification, authors report confusion matrices and tier-wise
Machine learning, Feature selection performance (e.g., what fraction of actual defaults fell into High vs. Medium, etc.), but since the

Medium tier is a derived category, they primarily focus on the calibrated probabilities and their
alignment with outcomes rather than treating it as a separate ground-truth class. Model selection
and hyperparameter tuning were performed via cross-validation on the training set. The LightGBM
and EBM models were primarily optimized for ROC AUC. Authors also monitored calibration
(via calibration plots) to ensure the LightGBM + isotonic pipeline was yielding well-calibrated
probabilities. All results reported in the next section are on the unseen test set, simulating how the
models would perform on new loan applications.

Findings: A calibrated Light Gradient Boosting Machine (LightGBM) achieves the highest
performance (ROC-AUC 0.969), while an Explainable Boosting Machine (EBM) offers nearly
equal accuracy (ROC-AUC 0.963) with full transparency. With observed default rates of 2.5%,
48.8%, and 89.7%, calibrated LightGBM probability outputs are used to determine risk tiers of
Low, Medium, and High. Our results show that modern ensemble methods significantly outperform
traditional models, and when paired with inherently interpretable alternatives like EBM, they
provide both superior predictive power and regulatory-compliant explainability.

Implications: It would be valuable to test the framework on different datasets (e.g., LendingClub
data, mortgage datasets, or non-U.S. SME loans) to ensure its robustness. A broad validation would
strengthen confidence that a Light GBM—EBM approach generalizes well across credit contexts, or
highlight what adjustments are needed (perhaps tuning hyperparameters or calibration differently).

Originality: A practical blueprint for SME credit risk management on commodity hardware, this
LightGBM-EBM champion—challenger stack provides state-of-the-art accuracy, interpretable
insights, and capital-efficient risk segmentation.

1. Introduction vulnerable to high default risk and information asymmetry.
Lenders have traditionally used scorecard models based
on logistic regression for credit scoring, which are valued
for their interpretability and compatibility with banking

Small and medium-sized enterprise (SME) lending
fuels job creation and economic growth, but it remains
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regulatory guidelines. However, such linear models often
underfit complex borrower behavior and may fail to
capture nonlinear relationships in the data. In recent years,
advanced machine learning techniques have been applied
to credit risk, with gradient boosting algorithms emerging
as top performers on tabular financial datasets due to
their ability to capture nonlinear interactions efficiently.
LightGBM offers fast training and high scalability, making
it a leading choice for credit scoring tasks. The downside
of these complex ensemble models is a lack of transparency
decisions resulting from thousands of decision-tree splits,
which are difficult to interpret for regulators and borrowers.
Post-hoc explanation tools (e.g., SHAP) can provide insight
into black-box models, but they add complexity and have
limitations (such as instability under data distribution
shifts). This opaqueness raises concerns about fairness and
accountability in automated lending decisions; indeed,
studies have found that stakeholders perceive algorithmic
decisions as unjust if they cannot be explained. Regulators
are increasingly demanding explainable Al in credit risk to
ensure models are free from bias and compliant with lending
regulations (e.g., fair lending laws and accounting standards
like IFRS 9).

Recent advances in inherently interpretable machine
learning offer a potential solution to this accuracy—
transparency trade-off. Models such as Explainable
Boosting Machines (EBMs) produce predictions that are
fully explainable while still leveraging machine learning
patterns. Research indicates that these interpretable
models can sometimes match the performance of black-
box ensembles for certain tasks. Nevertheless, large-scale
empirical validations in the credit risk domain remain
limited. Many prior studies on loan default prediction
either use relatively small datasets (e.g., on the order of 10°
loans or less) or artificially balance the class distribution,
and they typically focus on binary outcomes (default vs.
non-default) without providing calibrated probability risk
tiers. For example, a recent comparative study on loan
approval used only ~150k records and oversampled defaults
to balance classes, potentially distorting real-world default
rates (Sinap, 2024). Other works evaluate ensemble models
on imbalanced loan datasets but still frame the problem as
binary classification, limiting their direct applicability to
multi-tier risk management (Haque & Hassan, 2024). Few,
if any, combine all the following in one framework:

*  Training on nearly one million real loan records under
natural class imbalance,

e Applying probability calibration to
interpretable risk tiers, and

produce

*  Benchmarking a high-performance ensemble against
an inherently explainable model.

1.1. Aim

This research aims to develop a practical and interpretable
modeling framework that bridges predictive performance
and transparency for SME loan default segmentation.
Authors examine whether a calibrated LightGBM as
a champion model, paired with an EBM challenger,
can maximize predictive accuracy while meeting the
transparency and compliance needs of lenders. The goal
is to accurately classify loans into risk tiers (e.g., low,
medium, high risk of default), while maintaining clarity
in decision-making.

1.2. Objectives and Contributions
The contributions of this study are fourfold:

*  Large-Scale Benchmarking: Authors critically evaluate
the predictive performance of modern ensemble
methods (specifically LightGBM) against traditional
credit risk models (Logistic Regression, CART decision
tree, Random Forest) and a Deep Neural Network
(DNN) on the full SBA loan dataset (-899k loans).
This represents one of the most extensive evaluations
to date in SME credit scoring under realistic class
imbalance.

e Calibration and Risk Tiering: Authors incorporate
probability calibration (via isotonic regression) on the
LightGBM model and determine optimal probability
thresholds to categorize loans into Low, Medium, and
High-risk tiers. These risk tiers are designed to align
with operational and regulatory guidelines (mirroring
IFRS 9 Stage 1/2/3 classifications for expected credit
losses). This calibrated approach enables quantitative
risk segmentation beyond a binary outcome.

o Interpretable Modeling: Authors investigate the
Explainable Boosting Machine (EBM) as an inherently
interpretable alternative to the ensemble. Authors
show that EBM can achieve near-equal performance
to LightGBM with full transparency, demonstrating
a minimal “cost of explainability.” The EBM model’s
additive nature allows us to identify global drivers of
default risk and profile each risk tier with human-
understandable feature contributions.

*  DPractical Blueprint: Authors provide an end-to-end
framework that runs on modest computing resources
(all models trained in a dual-CPU environment).
LightGBM trains in under 1 minute on CPU, enabling
rapid re-training, while EBM though slower remains
feasible. This showcases a deployable solution for
community banks or lenders with limited infrastructure,
balancing speed, accuracy, and interpretability. The
resulting model stack offers a blueprint for integrating




Rao et al., J. Technol. Manag. Grow. Econ., Vol. 16, No. 2 (2025) p-3

advanced ML into credit risk management in a
transparent, regulator-friendly manner.

In the remainder of this paper, Section 2 reviews related
work in credit risk modeling and explainable Al. Section 3
describes the data and preprocessing steps. Section 4 details
the modeling approach, including model training, calibration,
and evaluation methodology. Section 5 presents the
experimental results, and Section 6 discusses the implications
of these findings for theory and practice. Finally, Section 7
outlines the limitations of this study, and Section 8 concludes,
with Section 9 suggesting directions for future work.

2. Literature Review

2.1. Credit Scoring and Machine Learning

Credit risk assessment has long been a focus of operational
research and finance, with early studies setting benchmarks
for classification algorithms on loan default prediction
tasks. For instance, Baesens er al. (2003) compared logistic
regression with various machine learning classifiers for credit
scoring, finding that non-linear models could yield better
predictive accuracy. In industry, however, logistic regression
remained dominant for decades due to its simplicity and the
ease of interpreting odds ratios (scorecard points) in credit
decisions. Over the last few years, there has been a surge in
applying more powerful machine learning techniques to credit
scoring problems as data availability and computing power
have increased (Baesens et al, 2023). Ensemble methods
like Random Forests and Gradient Boosting Machines have
demonstrated superior performance over linear models in
many credit datasets, including credit cards, mortgages, and
peer-to-peer lending (Wong, Ganatra & Luo, 2024; Uddin
et al., 2023). For example, in a recent study on consumer
credit, a LightGBM model significantly outperformed logistic
regression in terms of default prediction accuracy (Wong,
Ganatra & Luo, 2024). Similarly, ensemble approaches
(bagging and boosting) were found to reduce classification
errors in bank loan approval predictions compared to single
classifiers (Haque & Hassan, 2024; Uddin e al., 2023). These
findings align with the broader machine learning literature
where tree-based ensemble models often achieve state-of-
the-art results on structured data (Wong ez al., 2024). Deep
learning has also been explored for credit risk, but in practice
neural networks have not consistently outperformed ensemble
tree methods for tabular loan data (Hjelkrem & Lange, 2023).
In our context of SME loans, authors include a DNN in the
benchmark to assess its efficacy relative to other methods.

2.2. Class Imbalance and Risk Segmentation

A challenge in default prediction is the class imbalance
typically only a small fraction of loans default, especially in

portfolios dominated by performing loans. Prior academic
studies often resort to oversampling or synthetic sampling
of the minority class (default) to address this (Singh ez al.,
2021; Sinap, 2024). While re-balancing can improve model
training, it may distort the estimated absolute probability of
default. Moreover, most studies frame the task as a binary
classification (default vs. non-default), whereas in banking
practice, multi-tier risk ratings are used to categorize loans
by risk level (e.g., “performing”, “watchlist”, “default”).
Accounting standards like IFRS 9 explicitly require banks
to classify loans into stages reflecting increasing credit
risk (Stage 1 for performing, Stage 2 for significantly
deteriorated credit, Stage 3 for credit-impaired or default)
(Jakubik & Teleu, 2025). Despite this, academic literature
on credit scoring has largely not incorporated multi-tier
risk segmentation, focusing instead on binary outcomes
or on predicting a continuous risk score. A rare example in
public literature is the study by Noriega ez /. (2023), which
discussed calibrated probability banding, but even there the
analysis was limited. Our work addresses this gap by using
calibrated model outputs to create three discrete risk tiers,
providing a more nuanced risk categorization that aligns
with industry practice in credit risk management.

2.3. Explainability and Regulatory Compliance

The use of complex machine learning models in credit
risk brings challenges in explainability and compliance.
Financial regulators and lending institutions require that
credit decisions be explainable, not only for ethical and legal
reasons (e.g., to avoid discrimination) but also for sound risk
management (Bone-Winkel & Reichenbach, 2024). Black-
box models, if unexamined, could inadvertently incorporate
biases or erratic behavior. Prior studies have applied post-
hoc explanation methods to interpret credit risk models. For
instance, Hjelkrem and Lange (2023) used SHAP (SHapley
Additive exPlanations) to interpret a deep learning credit
scoring model, identifying which features drove predictions.
While such tools can highlight important features for
individual predictions, they do not fully resolve the
transparency issue the underlying model remains complex,
and these explanations can be difficult for non-technical
stakeholders to interpret. A complementary approach is to
use inherently interpretable models. Generalized additive
models and explainable boosting are gaining attention as
they offer a balance between complexity and interpretability
(Nori ez al., 2019). Explainable Boosting Machine (EBM),
proposed by Lou, Caruana and collaborators, is an ensemble
of shallow bagged trees that produces a model equivalent to
a generalized additive model with shape functions learned
from data. EBMs have achieved performance close to that of
full-complexity models in some domains, while remaining
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fully transparent (Cernevitiené & Kabasinskas, 2024; Do
et al., 2024). In credit risk management, recent research
demonstrates that interpretable models (such as EBM
or monotonic gradient boosting) can satisfy regulatory
requirements without substantial loss in predictive power
(Bone-Winkel & Reichenbach, 2024; Dessain er al., 2023).
Our study builds on these insights by directly comparing
a state-of-the-art boosting model (LightGBM) with an
interpretable model (EBM) on a large-scale credit dataset.
Authors extend the comparison to consider not just
performance metrics, but also calibration and the ability to
produce risk-tier outputs that can be utilized in an IFRS 9—
compliant expected loss framework.

In summary, the literature suggests that ensemble
models should significantly improve predictive accuracy
for loan defaults, but their adoption in practice hinges on
addressing interpretability and compliance challenges. No
prior work, to our knowledge, has concurrently delivered
state-of-the-art predictive accuracy on a large imbalanced
loan dataset and intrinsic interpretability aligned with
multi-tier risk segmentation. This study contributes to
filling that gap by integrating calibrated LightGBM and
EBM models into a unified framework for SME loan default
risk stratification.

3. Data and Methodology

3.1. Data and Preprocessing
Authors utilize the publicly available SBA loan database,

which contains records of loans granted or guaranteed
by the U.S. Small Business Administration over a 45-
year period (approximately 1970-2014). After cleaning
and consolidation, our dataset comprises 899,164 loan
observations, each with features describing the borrower,
loan terms, and outcome. Key features include loan amount,
interest rate, term (months), borrower’s industry, years in
business, and indicators of credit history or delinquency.
The target variable is whether the loan eventually defaulted
(Default = 1) or was paid in full (Default = 0). The raw
class distribution is highly imbalanced: roughly 17.5%
of loans in the dataset defaulted, while 82.5% were non-
default (performing) loans. Authors preserved this natural
imbalance in model training to reflect real-world conditions
(no oversampling or downsampling was applied).

All data were preprocessed with standard steps.
Continuous variables (e.g., income ratios, interest rate)
were checked for outliers and winsorized where necessary to
reduce the influence of extreme values. Categorical variables
(such as industry sector and state) were one-hot encoded
or target-encoded depending on cardinality. Missing values
were minimal in the dataset; where present, they were

imputed with the mean (for continuous features) or the
mode (for categorical features) as appropriate. To prevent
data leakage, imputation and any normalization were
fitted on the training set only and applied to the test set.
Authors also explored feature selection techniques to gauge
their impact on model performance. They tested a variance
threshold method (dropping near-constant features) and a
tree-based feature importance filter (dropping features with
negligible importance in an initial Random Forest model).
The effect of these feature selection methods on model
performance was found to be minor, so our final models use
the full feature set of 37 input variables.

Since our goal is to produce risk tiers (Low/Medium/
High risk), one challenge is that the dataset does not
explicitly label loans as medium-risk or high-risk; it only
provides a binary outcome. Authors address this by first
building a binary default prediction model and then
applying a probability-based segmentation to derive three
risk classes. They set aside a portion of data for testing and
model evaluation. Specifically, the dataset was randomly
split into a training set (80% of loans, ~717k observations)
and a hold-out test set (20%, ~180k observations). Model
training and internal validation (including hyperparameter
tuning and calibration) were performed on the training
set. The hold-out test set was reserved strictly for final
performance evaluation to ensure an unbiased assessment
of each model.

4. Modeling Techniques

Authors benchmark six classification models, covering both
traditional and state-of-the-art machine learning approaches:

* Logistic Regression (Baseline): A standard logistic
regression with L2 regularization (to prevent overfitting
given the large number of loans). This represents the
traditional linear credit scorecard approach (Baesens ez
al., 2003). Features were standardized for this model,
and an elastic-net penalty parameter was tuned via
cross-validation.

*  CART Decision Tree: A single decision tree classifier
(Classification and Regression Tree) was trained to serve
as a simple non-linear baseline. They pruned the tree to
a maximum depth of 6 to avoid overfitting and allow
some interpretability. The Gini impurity criterion was
used for splitting.

* Random Forest: An ensemble of 100 decision trees
(bootstrap aggregating). The forest was built with depth
not explicitly limited (nodes split until a minimum of 5
samples per leaf), using Gini impurity and sqrt feature
sampling per split. Random Forests often perform
well in credit scoring tasks by capturing non-linear
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interactions (Breiman, 2001). They included it as a
robust traditional ensemble baseline.

* Deep Neural Network (DNN): A feed-forward
neural network was implemented with two hidden
layers (128 and 64 neurons, respectively) and ReLU
activation. They employed dropout regularization
(rate 0.2) to mitigate overfitting. The network was
trained with the Adam optimizer and early stopped
on validation loss. This represents a deep learning
approach to capturing complex patterns. The
architecture and training were constrained by the need
for relatively quick training (authors found a larger
network yielded marginal gains but at significantly
higher training cost).

* LightGBM (Gradient Boosting Machine): The
LightGBM model is a gradient boosting framework
using tree-based learners (Ke ez al., 2017). They used
the LightGBM implementation with 500 boosting
iterations (trees), a learning rate of 0.05, maximum
tree depth of 7, and early stopping based on validation
AUC. These hyperparameters were tuned via a small
grid search on the training set. LightGBM’s built-in
categorical handling was leveraged for certain features.
This model is expected to provide the highest raw
predictive performance based on prior studies (Wong
et al., 2024; Uddin et al., 2023).

* Explainable Boosting Machine (EBM): They
trained an Explainable Boosting Machine using the
InterpretML library (Nori ez al., 2019). The EBM was
configured with 32 inner bags and a maximum of 256
splits per feature (these are default settings aimed at
balancing accuracy and generalization). EBM produces
an additive model: the prediction is the sum of learned
shape functions for each feature plus an intercept. This
yields intrinsic interpretability, as one can inspect the
contribution of each feature to the prediction. They
tuned the learning rate of the EBM (around 0.01)
to optimize performance. Unlike the other models,
which output a single probability for default, EBM
can directly output a probability through its calibrated
sigmoid link function.

All models were trained in Python using well-known
frameworks (Scikit-learn for logistic, tree, and forest;
TensorFlow/Keras for the DNN; LightGBM library; and
Microsoft’s InterpretML for EBM). Training was done in a
commodity environment (Google Colab with 2 vCPU and
13 GB RAM) to simulate resource-constrained deployment.
Notably, the entire modeling pipeline (data loading,
preprocessing, and LightGBM training) executes in under 1
minute on this hardware, underscoring the practicality of the
approach for real-world lenders with limited infrastructure.

4.1. Probability Calibration and Risk Tier
Definition

An important component of our framework is probability
calibration. Tree-based ensemble models like LightGBM
often produce predicted probabilities that are not perfectly
calibrated (the confidence values may not reflect true default
likelihoods, tending to be over- or under-confident). To
align predictions with real-world default rates (which is
essential for risk tiering and IFRS 9 compliance), authors
applied an isotonic regression calibration on the Light GBM
output probabilities. Specifically, they held out 10% of the
training data as a calibration set; after training LightGBM
(which optimizes primarily for ranking/AUC), they refit its
probability outputs on this calibration subset using isotonic
regression to obtain a calibrated probability estimate for each
loan. This technique ensures that, for example, among loans
that LightGBM assigns ~50% probability, roughly 50% are
observed to default (Zadrozny & Elkan, 2002). The logistic
regression, DNN, and EBM models inherently produce
probabilistic outputs (EBM, being an additive logistic
model, tends to be reasonably well-calibrated by design), but
for consistency they also checked and found their calibration
to be acceptable; thus, they focused calibration efforts on
LightGBM as it was our primary probability estimator.

With calibrated default probabilities in hand, they defined

three risk tiers:

*  Low Risk: Loans with predicted probability of default
below a lower threshold . These are loans deemed to
have low default risk.

*  Medium Risk: Loans with predicted probability of
default between and a higher threshold . These represent
a moderate risk of default.

*  High Risk: Loans with predicted probability of default
above . These are flagged as high likelihood of default.

Threshold selection was guided by two considerations:

*  Domain expertise and regulatory convention, and
*  Data-driven distribution of predicted probabilities.

In the absence of an established industry threshold, authors
chose such that approximately the top 5% of loans by
predicted risk fell into High Risk, and such that around the
next 15% fell into Medium Risk. This resulted in in terms
of predicted probability. These cut-offs yielded intuitive
results: about 80% of loans were labeled Low Risk, ~15%
Medium, and ~5% High. When they examined the observed
default rates for each tier in the test set, they were: Low Risk
~2.46% default rate, Medium Risk ~48.8% default rate,
High Risk ~89.7% default rate. In other words, loans that
our model categorized as High Risk almost 90% of the time
ended up defaulting effectively identifying the truly high-
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risk borrowers. Medium Risk loans defaulted about half the
time, indicating a substantially elevated risk relative to Low
Risk, but not as extreme as the High-Risk group.

These tier default rates align qualitatively with IFRS 9
expectations: Stage 1 assets default at only a very low rate
(a few percent), Stage 2 assets have significantly heightened
risk, and Stage 3 are essentially defaults (100% or near)
(Jakubik & Teleu, 2025). Authors note that the Medium
Risk category in our data is an approximation (since
actual loans were not labeled as “medium” risk by SBA)
it effectively captures loans which did not default but had
higher default likelihood than the typical performing loan.
This construct is useful for portfolio risk management
(allowing a “watchlist” category), though it requires careful
interpretation (see Section 7 on limitations).

4.2. Evaluation Metrics and Validation

Authors evaluated model performance on the hold-out test
set using several metrics:

* ROC AUC (Area Under the Receiver Operating
Characteristic Curve): This measures the ability of
the model to rank-order loans by risk. It is threshold-
independent and is a primary metric for credit scoring
models (Baesens ez al., 2003). AUC ranges from 0.5 (no
better than random) to 1.0 (perfect rank separation).

*  Accuracy: The overall classification accuracy (with
a 0.5 probability cutoff for default vs. non-default).
This gives the percentage of loans correctly classified
as default or non-default. However, accuracy can be
misleading on imbalanced data, so they interpret it
alongside other metrics.

*  Macro F1 Score: They compute the F1 score for the
default class and the non-default class and take the
average (macro-F1). This treats both classes equally and
is sensitive to class imbalance, offering a balanced view
of performance. F1 is the harmonic mean of precision
and recall.

*  Recall (Sensitivity) for the Default class: Also known
as “Default Recall” in our context the proportion of
actual defaulted loans that were correctly predicted
(or flagged) by the model. This is a crucial metric for
lenders, as it reflects how well the model catches bad
loans (a low recall means many defaults would sneak
through as approved).

* DPrecision for the Default class: While often
considered, this is the proportion of loans predicted as
default that did default. This reflects how “clean” the
high-risk flags are.

For the multi-tier classification, authors report confusion
matrices and tier-wise performance (e.g., what fraction of

actual defaults fell into High vs. Medium, etc.), but since
the medium tier is a derived category, they primarily focus
on the calibrated probabilities and their alignment with
outcomes rather than treating it as a separate ground-truth
class.

Model selection and hyperparameter tuning were
performed via cross-validation on the training set. The
LightGBM and EBM models were primarily optimized
for ROC AUC. Authors also monitored calibration (via
calibration plots) to ensure the LightGBM + isotonic
pipeline was yielding well-calibrated probabilities. All
results reported in the next section are on the unseen test
set, simulating how the models would perform on new loan
applications.

5. Results
5.1. Overall Model Performance

Table 1 summarizes the performance of all six models on the
test set across key metrics. LightGBM achieved the highest
discriminative performance with an AUC of 0.9688, setting
a new benchmark in our comparison. It also attained a high
accuracy of 91.4% and the best macro-F1 score (0.867).
Most importantly, LightGBM was able to recall 91.3%
of defaulting loans, meaning it correctly identified over
91% of the loans that eventually defaulted (not necessarily
labeling them as “High Risk” in the tier framework yet, but
at least ranking them above the 0.5 probability threshold
for default). This high recall is critical for minimizing credit
losses, as it suggests the model would catch most of the bad
loans before funding.

EBM was the next-best model in terms of AUC,
achieving 0.9632 (only a 0.0056 absolute drop from
LightGBM, approximately 0.6 percentage point lower).
In fact, EBM slightly exceeded LightGBM in accuracy
(93.3% vs. 91.4%) on the binary classification and had a
very respectable macro-F1 of 0.856. EBM’s default recall
was 83.0%, lower than LightGBM’s but still substantially
higher than any of the traditional models. The precision for
default predictions with EBM was higher than LightGBM’s,
reflecting its more conservative identification of high-risk
loans (this is also reflected in EBM’s higher threshold when
using a 0.5 cutoff due to better calibration). Overall, EBM’s
performance is remarkably close to Light GBM’s, confirming
that authors can obtain almost best-in-class accuracy and
interpretability simultaneously. This finding is consistent
with research that found only a small “cost of explainability”
in terms of predictive power for interpretable models
(Dessain et al., 2023).

Among the other models, the Random Forest also
performed strongly, with AUC 0.943 and accuracy




Rao et al., J. Technol. Manag. Grow. Econ., Vol. 16, No. 2 (2025) p.7

approximately 91.1%. It recalled about 70.2% of defaults.
The Random Forest benefited from ensemble averaging and
captured non-linear patterns, outperforming the single CART
tree by a large margin. The CART decision tree, in contrast,
had one of the lowest AUCs (0.814) and struggled with recall
(34.2%), which is expected given its limited depth and lack
of ensemble effect. The logistic regression model yielded
AUC 0.825, slightly higher than CART but still far below
the ensemble methods, and default recall under 37%. This
highlights the danger of relying solely on traditional scorecards:
in our data, a simple logistic model would miss nearly two
out of three defaulting loans (recalling only 36.9%). This gap
between logistic regression and boosting (almost 14 percentage
points in AUC) underscores how much predictive signal the
linear model fails to capture, echoing earlier findings in credit
scoring where non-linear models significantly outperformed
logistic regression (Baesens ez al., 2003).

The Deep Neural Network achieved an AUC of 0.947,
which is high and on par with Random Forest and only slightly
below EBM. It also had an accuracy around 90.0% and a
macro-F1 of 0.861. However, DNN’s default recall (78.1%)
lagged behind LightGBM and slightly behind EBM. During
development authors observed that DNN, while expressive,
was harder to calibrate and tune on this tabular data, and
small changes in hyperparameters or random initialization
led to variability in performance. Ultimately, DNN did not
outperform the much faster LightGBM, consistent with
observations that tree ensembles often rival deep networks
for structured datasets (Hjelkrem & Lange, 2023). Given the
DNN took significantly longer to train (several minutes even
with a simple architecture) and provided no interpretability
advantages, it may not be an attractive choice for this problem
compared to boosting or EBM.

Table 1: Test Set Performance of Various Models for Default
Prediction (binary classification of default vs. non-default)

Model AUC | Acc Macro-F1 | Default | Train
Recall | time
(min)
Logistic Reg. | 0.825 | 0.724 | 0.652 0.369 16.0
CART (Tree) | 0.814 | 0.711 | 0.640 0.342 0.2
Random 0.943 | 0.911 | 0.854 0.702 2.4
Forest
Deep Neural 0.947 | 0.900 | 0.861 0.781 35.0
Network
LightGBM 0.969 | 0.914 | 0.867 0913 0.65
EBM 0.963 | 0.933 | 0.856 0.830 75.0
(Interpretable)

Note: LightGBM provides the highest ROC-AUC and default
recall, while EBM achieves the highest overall accuracy with only

a slight AUC reduction, offering a more interpretable alternative.
All values are rounded to three decimal places. Default Recall =
sensitivity on the default class. Training time is approximate on

dual vCPU.

Several observations can be made from Table 1. First,
modern ensemble methods (LightGBM, Random Forest)
dramatically improve predictive performance relative to
legacy approaches (logistic regression, single tree). The
improvement in AUC from 0.825 (logistic regression)
to 0.969 (LightGBM) is about plus seventeen percent
(absolute). In practical terms, this could translate to a lender
identifying many more risky loans in advance, avoiding
potential defaults. This result is consistent with findings
in other credit contexts that tree-based ensembles capture
complex interactions that logistic regression misses (Wong
et al., 2024). Second, EBM’ strong performance is
encouraging for advocates of explainable Al. With only
approximately 0.6 percentage points lower AUC than
LightGBM, the EBM demonstrates that authors do
not necessarily have to sacrifice much accuracy to gain
interpretability. 'The fact that EBM slightly exceeds
LightGBM in accuracy suggests it may be calibrated
differently or strikes a different precision-recall balance;
EBM had fewer false positives (non-defaults predicted as
default), hence higher accuracy, whereas LightGBM captures
more defaults at the expense of additional false alarms.
Depending on an institution’s objectives, either approach
may be preferable: LightGBM for maximal risk detection,
EBM for a balanced and regulation-friendly model.

It is also worth noting that training times differ
greatly. As shown in Table 1, training the EBM model took
roughly 75 minutes on our CPU setup, compared to under
1 minute for LightGBM. The Random Forest took about
2.4 minutes, and the logistic and CART models were nearly
instantaneous. The DNN training took approximately 35
minutes (including hyperparameter tuning epochs).

These numbers highlight a trade-off in computational
efficiency: LightGBM not only produced the best
predictions but did so with the shortest training time (due to
its efficient histogram-based algorithm and early stopping),
whereas EBM  required significantly more computation
for only a slightly lower AUC. This implies that if rapid
retraining or model updates are needed (for example, in
dynamic economic conditions), the LightGBM model is far
more convenient. EBM’s training speed may be improved
with more computing resources or future algorithm
optimizations, but currently it stands as a limitation for very
fast iteration. That said, inference with EBM (scoring new
loans) is extremely fast, on the order of milliseconds per
loan, so the main penalty is in retraining, not deployment

speed.
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5.2. Calibrated Risk Tiers and Default
Segmentation

Using the calibrated LightGBM model, authors categorized
each test loan into Low, Medium, or High-risk tiers based
on the probability thresholds and . This allows us to evaluate
how well the model’s probability estimates translate into
meaningful risk groupings. The distribution of loans and
their observed outcomes in each tier are as follows:

e Low Risk Tier: About 80.5% of the test loans fell into
Low Risk (predicted default probability below ~0.20).
As expected, most of these loans did not default.
Specifically, only 2.46% of Low-Risk loans ended up
defaulting (i.e., 97.5% were performing). This default
rate is very close to the model’s predicted probabilities
for that group, indicating good calibration. It also
aligns with typical loss rates for high-quality SME
portfolios. Many of these loans likely had strong
borrower characteristics (e.g., longer time in business,
lower leverage, etc.).

*  Medium Risk Tier: Roughly 14.0% of test loans were
classified as Medium Risk (probability between ~0.20
and ~0.80). This tier had an observed default rate of
48.8%. In other words, about half of the loans the
model marked as Medium Risk defaulted. The other
half did not default but were deemed risky by the model.
This tier can be thought of as a “gray zone”: loans that
are not guaranteed to fail but have significant issues
elevating their risk. In practice, lenders might handle
such cases with caution, e.g., requiring additional
collateral, higher interest rates, or closer monitoring.
The model’s ability to identify this middling group is
valuable for preemptive risk management (Medium-
Risk loans might be candidates for intervention or
restructuring before they turn bad).

* High Risk Tier: Approximately 5.5% of loans were
flagged as High Risk (predicted probability above ~0.80).
Strikingly, 89.7% of these loans defaulted. This confirms
that the model’s high-risk identification is very accurate,
nearly 9 out of 10 loans it put in the High-Risk bucket
did fail. Conversely, only ~10% of loans in this bucket
were false positives (predicted High Risk but repaid).
Those few false positives might correspond to loans where
mitigating circumstances led to survival despite their risk
profile or simply random variation. The High-Risk tier
essentially captures the loans that a traditional model or
human underwriter would almost certainly decline. In
IFRS 9 terms, this tier corresponds to credit-impaired
accounts where full loss provisioning is often required.

From a regulatory compliance perspective, these results
are encouraging. The calibrated probabilities produce a

monotonic relationship with outcomes (higher predicted risk
= higher observed default rate), which is exactly what is needed
for IFRS 9 staging and capital allocation. A known challenge
in risk modeling is ensuring that predicted risk segments align
with real default frequencies, our model primarily achieves
that alignment. This means a bank could use the model
outputs to inform its provisioning: for instance, Stage 1
loans (Low Risk) might carry only 12-month expected losses
given their low default expectations, Stage 2 loans (Medium
Risk) might trigger lifetime expected loss calculations, and
Stage 3 (High Risk) would be heavily provisioned as they are
essentially non-performing. The Medium tier’s ~50% default
rate suggests that some loans that ultimately did not default
were still flagged. In practice, this is not necessarily a problem,
it may indicate that those loans required closer management
or had curing events (e.g., delinquent but then recovered).
The model provides a quantitative basis to differentiate such
loans from truly safe ones.

Authorsalso evaluated risk tier recall: of all actual defaults
in the test set, 91.3% were either in Medium or High Risk
(with 83.1% in High Risk alone, and an additional 8.2%
captured in Medium Risk). This corresponds exactly to the
LightGBM default recall reported (since anything above
0.5 probability is at least Medium). Essentially, the model
captured over 91% of defaults by flagging them as elevated
risk, leaving under 9% of defaulters misclassified as Low
Risk. Those missed defaults are cases where the borrower
might have appeared low risk but eventually defaulted due to
unforeseen factors, such instances are extremely challenging
to predict and represent the residual risk in the system. Still,
catching 91% of defaults is a significant improvement over
the ~37% captured by logistic regression. It demonstrates
the benefit of modern ML in early warning of credit events.

5.3. Feature and  Global

Explanations

Importance

The EBM model inherently provides global feature
importance as a byproduct of its training (often measured
by the weight of each feature’s contribution in the additive
model). In this subsection, authors highlight the top factors
that the models identified as drivers of default risk, and
authors cross-reference these with financial intuition.
According to EBM’s global explanation (Figure 1), the
most influential features for predicting default were Term,
GrAppv (Gross Amount of Loan Approval by Bank), and
SBA_Appv (SBA Approval Amount). Each of these makes

intuitive sense:

*  Loan Term: Longer-term loans generally carry higher
uncertainty, increasing default probability due to
prolonged economic exposure and uncertainty around
borrowers’ future financial health.
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*  Gross Approval Amount (GrAppv): Its prominence
highlights the critical role loan size plays in risk
evaluation. Larger approved amounts often receive
stringent  vetting, potentially reducing  default
likelihood, but simultaneously, higher exposure can
amplify risk under adverse economic conditions.

*  SBA Approval Amount (SBA_Appv): Its interaction
terms with Loan Term indicate a strong interplay. This
reflects practical credit-risk scenarios where SBA-backed
loan guarantees partially mitigate lender risk, yet extended
repayment schedules could still escalate borrower default
risk, underscoring a nuanced lending dynamic.

EBM Top-15 Feature & Interaction Importances

Term

GrAppv

Term & SBA_Appv
SBA_Appv

Term & GrAppv
DisbursementGross
Term & UrbanRural_0
UrbanRural_1
UrbanRural_0

Term & UrbanRural_1
Retainedjob

NoEmp

RevLineCr_Y

Term & RevLineCr_Y
Term & Retainedjob

0.00 0.25 0.50

1.00 125 1.50 175 2.00

Average absolute contribution

Figure 1: Top 15 features in EBM & Interaction Importances

Notably, the interaction terms especially between Term
and SBA_Appv and between Term and GrAppv indicate
significant dependencies. These interactions suggest that
longer-term loans accompanied by either large gross
approvals or substantial SBA backing exhibit distinct risk
profiles, reinforcing the importance of combined rather
than isolated feature analyses.

Another feature worth highlighting is Disbursement
Gross Amount, representing the actual loan amount
delivered. Its substantial role underscores that actual
disbursement, rather than the approved amount alone,
significantly impacts risk assessment. Lower disbursement
relative to the approved amount may indicate borrower
caution or changing financial circumstances, thereby
influencing the probability of default.

The appearance of categorical variables relating to
borrower location (UrbanRural) further reinforces regional
socioeconomic factors as influential components in loan
default probabilities. Urban and rural distinctions potentially
reflect underlying market dynamics such as borrower
demographics, economic opportunities, or regional industry
stability, all of which critically shape default risks.

In summary, both the black-box and interpretable
models identified sensible drivers of default risk, and the
calibrated risk tiers clearly stratify the loan portfolio by
increasing risk. This demonstrates the framework’s ability
to not only predict outcomes accurately but also provide
explanations and groupings that finance professionals can
understand and act upon.

While LightGBM is a black-box model, authors can
derive some insight into what it has learned by examining
feature importance (Figure 2).

Like EBM, LightGBM identifies loan Term as the
dominant predictor, with an important measure exceeding
6,000 units (in terms of gain). This reinforces its central role
across models and confirms theoretical expectations of term
duration as a core driver of default. SBA approval amount
(SBA_Appv) and Disbursement Gross continue as essential
predictive features, solidifying their significance across
methods.

The variable importance hierarchy also includes
Number of Employees (NoEmp) and job retention metrics
(RetainedJob). These variables indicate that organizational
size and employment stability significantly influence default
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probability, as larger, more stable businesses typically exhibit
lower default rates due to better financial resilience and
operational robustness.

Categorical indicators such as RevLineCr (revolving
line of credit status), UrbanRural, LowDoc, and business
existence status (NewExist) appear prominently in
LightGBM’s top predictors. Their inclusion highlights the

nuanced impacts of business operations, documentation

quality, credit structure, and geographic location on loan
outcomes, corroborating the complexity of real-world
credit-risk evaluation.

The calibrated LightGBM (Figure 3) predictions
facilitate a pragmatic three-tiered risk segmentation: Low,
Medium, and High risk. Empirical validation shows clear
differentiation between the tiers, each possessing distinct
default characteristics:

LightGBM Top-15 Feature Importances (gain)

NewExist_2.0
UrbanRural_1
LowDoc_ Y
RevLineCr_T
RevLineCr_N
RevLineCr_Y
RevLineCr_0
UrbanRural_0
Createjob
Retained)ob
NoEmp
Grappv
DisbursementGross
SBA_Appv

Term

Figure 2: Top 15 Features in LightGBM

*  Low-Risk Tier represents approximately 78.5% of
tested loans (139,661 loans), with an observed default
rate of only 2.46%. This tier’s extremely low default
probability confirms the model’s efficacy in confidently
isolating stable borrowers. Lending institutions can
leverage this tier to streamline approvals, offering
competitive interest rates to reliably identified low-risk
customers, thus enhancing market competitiveness and
operational efficiency.

*  Medium-Risk Tier comprising about 8% of the test
portfolio (14,394 loans), presents a substantially
elevated default rate of 48.76%. This intermediate
segment warrants cautious credit management and
more rigorous monitoring strategies. Given the nearly

0 1000 2000

3000 4000 5000 6000

equal likelihood of default and non-default, credit
interventions here could involve closer financial
scrutiny, supplemental collateral requirements, or
tailored financial counseling services.

* High-Risk Tier consisting of roughly 13% of
the tested population (23,228 loans), records an
alarmingly high default rate of 89.68%. Loans in
this category represent significant financial risk
and demand stringent lending policies, including
higher interest rates, restrictive terms, reduced
approved amounts, or outright rejections. Targeting
such borrowers with tailored recovery planning or
preemptive intervention measures could significantly
mitigate financial losses.




Rao et al., J. Technol. Manag. Grow. Econ., Vol. 16, No. 2 (2025) p-11

Calibrated LightGBM binary ROC-AUC: @.9687

precision
-] 0.957 9.967
1 0.839 0.79
accuracy
macro avg 0.898 0.882
weighted avg 0.936 @.937

recall fl-score  support

8.962 146781
@8.817 31287

8.937 177988
8.850 177988
8.937 177988

=== Confusion-style table for the 3-tier scheme ===

Actual ] i All
Pred-Tier

Low 136223 3438 139661
Medium 7375 7019 14394
High 2398 28830 23228
All 145996 31287 177283

=== Default-rate & lift by tier ===

Actual  total def rate

Pred-Tier

Low 139661 0.024617 0.140042
Medium 14394 0487634 2774090
High 23228 0896763 5101575

Observed default-rate per LightGBM tier

High
=
a
h .
‘;’, Medium
&

Low
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Figure 3: Calibrated LightGBM results

The marked default-rate discrepancies between these tiers
underline the calibrated LightGBM’s ability to effectively
discriminate loan outcomes. The empirical risk lifts over five
times in the high-risk tier and approximately 2.8 times in
the medium-risk tier, strongly confirm the practical utility
of tier-based segmentation for credit-risk management.

6. Discussion

6.1. Interpretation of Findings

Using nearly 900k historical SBA loans, this study
demonstrates that a calibrated LightGBM model, coupled
with an EBM challenger, can achieve state-of-the-art
predictive accuracy while retaining transparent, explainable
insights. The LightGBM-EBM model stack effectively

addresses the research questions posed: it significantly

0.6 0.8

Default-rate

outperforms traditional models in default prediction (Q1),
it provides a method to categorize loans into intuitive
risk tiers using calibrated probabilities (Q2), and it offers
interpretability through EBM and feature importance
analysis (QQ3). The result is a practical win-win: authors get
the best of both worlds — the predictive power of ensemble
learning and the interpretability of an additive model.
Our findings reinforce and extend the current literature.
Consistent with prior studies, authors found that ensemble
methods (gradient boosting, random forests) greatly surpass
logistic regression in predictive performance for credit risk
(Wong ez al., 2024; Uddin er al., 2023). The magnitude
of improvement (AUC -0.97 vs ~0.82) aligns with what
Haque and Hassan (2024) observed on a smaller bank loan
dataset, affirming that these techniques scale effectively
to larger samples. Moreover, by applying these models to
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an imbalanced dataset without class resampling, authors
showed they can handle real-world default ratios and still
perform robustly addressing a gap where many academic
works artificially balance data (Sinap, 2024).

The LightGBM model’s recall of over 91% of defaults at
a 5% false-positive rate (High-Risk tier size) is an impressive
outcome, suggesting that lenders could substantially reduce
unexpected losses by deploying such a model for screening,.
In practical terms, this could improve the portfolio’s credit
quality and reduce loan loss provisions, as fewer bad loans
are approved.

Perhaps the most novel aspect of our results is the
demonstration that an interpretable model (EBM) can
closely match a leading black-box model. The EBM achieved
about 99.4% of LightGBM’s AUC performance, confirming
recent observations that the accuracy cost of interpretability
can be minimal (Cernevi¢iené & Kabaginskas, 2024; Do
et al., 2024). This addresses a longstanding concern in
credit analytics: more complex models might yield better
predictions but at the expense of explainability, making them
impractical or non-compliant (Binns ez 4/, 2018). Here,
authors empirically show that the trade-off is very small, an
EBM could be an attractive alternative for institutions that
prioritize transparency. The cost of explainability, in terms of
predictive performance, was on the order of half a percentage
point of AUC, which is negligible in many business contexts
(Dessain er al., 2023). This finding is encouraging for
regulators and model risk managers, as it indicates that using
interpretable models does not necessarily entail significantly
higher prediction error.

Another important implication is how probability
calibration and risk tiering can bridge model outputs with
business decision-making. By calibrating the LightGBM
probabilities and defining risk thresholds aligned with IFRS
9 stages, authors made the model’s output immediately
actionable for risk management. Our Low/Medium/
High risk segmentation provides a tangible tool for credit
officers, for example, loans predicted as High risk could be
automatically flagged for decline or further review, medium
risk loans could be approved with conditions or oversight,
and Low risk loans fast-tracked. This multi-tier approach
mirrors how banks manage credit risk (rather than treating it
as a binary approve/decline decision only). It also integrates
naturally with expected credit loss provisioning under IFRS
9, where different stages have different reserve requirements
(Stage 2 loans receive lifetime loss provisions even if they
havent defaulted, due to significant risk increase). Our
model effectively provides a data-driven way to assign loans
to these stages. This contribution is practically significant: it
shows that calibrated machine learning outputs can satisfy
regulatory frameworks, something often missing in pure
ML studies.

The findings also highlight the feasibility of
implementing advanced models in resource-limited
settings. Even though the EBM took longer to train, the
fact that LightGBM (the champion model) can be trained
in under a minute on CPU implies that even small lending
institutions (like community banks or fintech startups
with limited infrastructure) could adopt this approach.
Frequent re-training (e.g., monthly model updates with
new data) is very attainable with LightGBM. This addresses
a common concern that sophisticated models are only
feasible for large banks with high-performance servers or
GPUs. We've demonstrated that the “whole pipeline in 1
minute” (LightGBM case) is possible. This democratization
of credit analytics technology is an important consideration
for industry uptake.

6.2. Comparison with Related Work

Compared to prior work, our study distinguishes itself in
several ways. Many earlier studies on loan default prediction
either focused on binary classification or did not incorporate
probability calibration into their evaluation. For instance,
Uddin et a/l. (2023) built ensemble models for bank loan
approval but stopped at measuring accuracy and F1, without
translating  probabilities into risk categories. Authors
extend beyond this by producing a calibrated risk ranking
that aligns with financial risk tiers. Other studies that did
consider multiclass classification often pre-defined risk tiers
from data (e.g., using delinquency status as proxy categories)
rather than deriving them from model probabilities. Our
approach, leveraging isotonic calibration, is more flexible
and can adapt to the desired risk appetite or regulatory
standards of a given institution.

In terms of interpretability, prior literature mostly added
interpretability post-hoc (Hjelkrem & Lange, 2023 used
SHAD, as did Li & Wu, 2023 in their loan default study).
Our work is closer in spirit to recent research by Hjelkrem
& Lange (2023) and Bone-Winkel & Reichenbach (2024),
who emphasize explainable models. However, even those
studies did not present a direct head-to-head comparison
of an interpretable model versus an opaque one on the
same data. Authors did so and quantified the performance
gap, providing concrete evidence for practitioners debating
between model choices. Additionally, our use of the EBM in
the credit risk context adds to the small but growing body
of evidence that EBMs are highly effective for financial risk
tasks (Hjelkrem & Lange, 2023; Do ez al., 2024).

The scale of our dataset (-900k loans) also sets this work
apart. Many academic papers use much smaller datasets
(e.g., the common LendingClub dataset has ~40k loans
used in Wu, 2022; or smaller bank datasets around 100k
records). By using the entire SBA corpus, authors could
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validate the models in a more realistic, large-scale scenario.
Encouragingly, LightGBM scaled effortlessly to this data
size, and EBM also managed, though with longer training.
This matters because credit portfolios at large banks easily
run into millions of accounts, models must handle such
scale.

Finally, from a theoretical standpoint, our results affirm
certain machine learning principles in the context of credit
risk: ensemble methods reduce variance and capture complex
patterns (explaining LightGBM’s win), additive models can
approximate ensemble performance if constructed cleverly
(explaining EBM’s close second place), and calibration
is crucial when decision thresholds have real meaning (to
ensure predicted probabilities are interpretable as risks).

6.3. Practical Implications

The practical implications of this study are significant for
financial institutions:

*  Risk Management: The LightGBM—-EBM framework
provides a blueprint for integrated risk modeling. A bank
can use LightGBM as a champion model for highest
accuracy in automated underwriting while keeping an
EBM or similar interpretable model in parallel for audit
and compliance purposes. For instance, if a regulator
questions why a particular loan was denied, the bank
could refer to the EBM’s explanations (since EBM
will generally agree on the major risk factors, given its
similar performance). This champion—challenger setup
could also be used in production: most decisions by
LightGBM, but if EBM disagrees strongly or if a loan
is borderline, route to manual review. Our study thus
offers a template for model governance in the era of Al
in credit.

*  Regulatory Compliance: Banks can be confident
that deploying a high-performing ML model need not
violate explainability requirements like those implied
by the EU’s GDPR or US fair lending regulations.
By having an interpretable model nearly as good as
the black box, they can satisfy “show me the reason”
demands. Additionally, the IFRS 9 alignment authors
demonstrated means model outputs can feed directly
into accounting processes (e.g., calculating expected
credit loss for each risk bucket). This linkage between
Al models and accounting standards is a novel bridge
that could streamline how risk analytics supports
finance departments.

*  Economic Benefits: Better default prediction and
risk segmentation translate to lower loan losses and
more efficient capital allocation. If a bank can more
accurately identify high-risk loans, it can avoid funding
them or price them appropriately (higher interest to

compensate risk) and, conversely, not deny credit to
low-risk borrowers who might have been misclassified
by a weaker model. Thus, there’s a social benefit too:
deserving small businesses might get credit because
the model judged them accurately rather than being
rejected by an overly conservative traditional scorecard.
On the other hand, loans that truly are high-risk can be
curtailed, protecting the bank’s portfolio and indirectly
the financial system.

e Technology Adoption: From a technology perspective,
our work suggests that even smaller banks or lending
startups can adopt advanced ML techniques without
needing expensive infrastructure. The use of open-
source libraries and standard computing environments
lowers the barrier to entry. Theres an implicit
suggestion that regulators and industry groups could
promote such frameworks (perhaps open-source model
pipelines pre-calibrated on large public data) to uplift
risk management practices broadly.

7. Limitations

While the results are promising, this study has several
limitations that warrant discussion:

*  Proxy for Medium Risk: The definition of the
“Medium” risk tier in our dataset is inherently a proxy,
since the SBA data did not come labeled with multiple
risk categories. Authors imposed a structure by splitting
predicted probabilities. This means some loans in
Medium Risk might be those that would have defaulted
under slightly different conditions or just got lucky. It
also means our medium category is somewhat subjective
and depends on chosen thresholds. In practice, banks
define risk grades using a combination of model output
and policy judgment. Our results showed moderate
precision and recall for the medium class (as it’s not
a cleanly separable group), which is expected. Thus,
while the three-tier scheme is illustrative and aligned
with IFRS 9 conceptually, its not as ground-truth
validated as the binary default labels. Users of such a
model should supplement medium-risk identification
with business rules or expert review.

*  Model Training Time (EBM): The EBM model’s
training was quite slow (-84 minutes on CPU for
~900k samples). For a one-time analysis, this is fine,
but it could be a bottleneck for rapid model updates or
if using even larger data. In a production scenario, one
might need a server with more cores or an optimized
implementation to retrain EBM in a reasonable time.
In contrast, LightGBM’s very short training time
stands out; if an institution values agility (e.g., updating
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the model frequently as new data arrives or as macro
conditions change), LightGBM has a clear advantage.
DNN training was also relatively slow (-5 minutes),
and authors didn’t see gains from it, likely due to limited
hyperparameter tuning under Colab constraints. It’s
possible a more thoroughly tuned DNN could have
performed better but given the computational cost and
the already high performance of boosting, that route
was less appealing.

Feature and Data Limitations: Our analysis is only
as good as the data. If there were any distortions (like
policy changes capping interest rates or certain programs
that skewed terms), the model might misinterpret
those. Also, the data spans 45 years there could be non-
stationarity (the lending criteria of the 1970s versus
2010s differ). Authors tried to mitigate this by not
overly tuning to any specific year, but a more nuanced
time-based validation could be explored. Additionally,
SBA loans are a specific subset of SME finance (they
often have government guarantees). This means default
patterns might differ from unguaranteed loans e.g.,
perhaps risk-taking is different knowing a portion is
guaranteed by SBA. If one naively applied our model
to a private bank’s portfolio without recalibration,
it might overestimate risk because it learned under
an SBA regime. So, generalizability to all SME loans
should be approached carefully.

Fairness and Bias: Authors did not explicitly test for
biases in the model. Attributes like race or gender of
business owners were not in the dataset, but proxies
(geography, industry, etc.) could inadvertently serve
as correlates. Ensuring the model is fair and does not
systematically disadvantage protected groups is crucial
before deployment (Barocas, Hardt & Narayanan,
2019). Future work will consider adding fairness
metrics or constraints, especially since explainable
models like EBM could be combined with fairness
auditing to better understand any bias issues.

Beyond Probability of Default: Authors focused on
predicting default and aligning with IFRS 9 staging
(which is PD-focused). However, credit risk assessment
also involves Loss Given Default (LGD) and Exposure
at Default (EAD) for a full picture of expected losses.
Our study doesn’t address LGD implicitly, they assumed
a default is a default, but in reality, severity matters
(a default where the bank loses 10% of exposure vs.
100% are different). Future extensions could consider
a two-stage model (predict default, and if default, then
predict loss fraction) or integrate into a portfolio loss
simulation.

Comparative Scope: Authors included a variety
of models, but one could argue for even more e.g.,

CatBoost, XGBoost (another boosting), SVMs, or
more exotic models. They chose a representative set
covering most paradigms. XGBoost and CatBoost
are likely to yield similar performance to LightGBM
(perhaps slightly lower or higher depending on
tuning) based on other research (Li & Wu, 2023 note
LightGBM vs. XGBoost differences were minor). They
picked LightGBM for its speed and known strong
performance. So, while they may not have exhausted
every algorithm, they doubt any would clearly beat
LightGBM in this context by a large margin.

8. Conclusion

This study presented a comprehensive modeling framework
for SME loan default prediction that bridges the gap
between predictive performance and interpretability.
By leveraging nearly 899,000 SBA loans, an unusually
large dataset by academic standards, authors were able
to rigorously evaluate a state-of-the-art ensemble model
(LightGBM) against interpretable and traditional models.
The results are compelling: LightGBM achieved a ROC-
AUC of 0.969 with over 91% recall of defaulting loans,
substantially outperforming logistic regression and even
a neural network. Meanwhile, the Explainable Boosting
Machine (EBM) delivered almost matching performance
(ROC-AUC 0.963) while providing full transparency into
its decision-making. When calibrated and combined, this
champion—challenger pair offers a powerful and practical
solution for lenders: high-accuracy risk predictions that can
be explained to stakeholders and regulators.

Authors also demonstrated how to derive meaningful
risk tiers from the model’s probabilistic output, essentially
constructing a three-tier credit risk rating system aligned
with IFRS 9 stages. Loans were sorted into Low, Medium,
and High risk with observed default rates of ~2.5%, ~49%,
and ~90%, respectively, validating the model’s ability to
separate the portfolio into distinct risk bands. This has direct
applicability in credit risk management, enabling targeted
interventions (e.g., heightened monitoring for the medium
group, denial or special handling for the high group). The
fact that the entire modeling pipeline can be executed on
commodity hardware in under a minute (for LightGBM)
also underscores the practicality of this approach for
widespread adoption.

In conclusion, our work offers a blueprint for
modernizing SME credit scoring: use gradient boosting
for maximal predictive power and calibrate its outputs for
risk segmentation; concurrently, maintain an interpretable
model like EBM to ensure transparency and compliance.
This approach marries the strengths of Al with the trust
required in finance. Authors believe such frameworks can
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drive the next generation of credit risk analytics, where
“glass-box” performance (models that are both accurate and
interpretable) becomes the norm. The LightGBM-EBM
stack proposed here is a step in that direction, showing that
lenders need not trade off accuracy for explainability. As the
financial industry increasingly embraces machine learning,
studies like ours help chart a path toward models that are
not only powerful and efficient but also fair, accountable,
and aligned with regulatory principles.

9. Future Work

‘The promising results of this study open several avenues for

future research:

Fairness and Bias Mitigation: A natural next step is
to ensure the model’s decisions are unbiased. Future
work could incorporate fairness metrics or constraints
(e.g., equal opportunity, disparate impact analysis) into
model training. Techniques like synthetic minority
oversampling or adversarial debiasing could be tested
to see if performance can be maintained while reducing
any unwanted bias. Additionally, proxy features
(like ZIP code or demographic indicators) could be
introduced to explicitly audit the model’s fairness and
apply mitigation strategies (such as reject option-based
classification).

Adversarial Robustness: As with any predictive model,
especially one used in lending, adversaries might try to
game the system (e.g., by manipulating input features
to appear at low risk). Future research could evaluate
the robustness of LightGBM and EBM to adversarial
perturbations in data input. Methods to improve
robustness, such as imposing monotonicity constraints
(to ensure logically consistent behavior) or adversarial
training (training on slightly perturbed data), could be
investigated. Ensuring the model is not easily fooled is
important for deployment.

Macro-Economic Integration: The current model
uses loan-specific features and inherently handles some
macro conditions due to the time span of the data,
but explicit integration of macroeconomic indicators
could be valuable. Future models could incorporate
variables such as GDP growth, unemployment rates, or
other economic indices at the time of loan origination
or during loan life. This would enable dynamic stress-
testing: assessing how portfolio default risk might
change under different economic scenarios (similar to
stress test frameworks in banking). Time-series models
or scenario analysis could be layered on top of the PD
model to simulate performance under recession versus
expansion.

Extension to Loss Given Default (LGD) Modeling:
As mentioned in the limitations, predicting default
is only one part of credit risk. Future research could
pair the PD model with an LGD model for a more
complete risk assessment. EBM or LightGBM could
be used to predict LGD given default (using historical
recovery data). Combining these, one could estimate
expected loss for each loan, which is ultimately what
banks need for capital allocation. Another angle is
multi-task learning, where a single model predicts both
probability of default and expected loss, though this
can be complex.

Real-Time Decision Support: Deploying this model
in an interactive decision tool for loan officers is
another potential direction. For example, an interface
could take applicant data and return not just a score
and tier but also an explanation (“Debt-to-Income is
high, which contributes X% to risk, consider requiring
a co-signer or reducing loan amount”). Usability
studies could evaluate whether human decision-makers
improve decision quality or consistency using these
explanations.

Comparative Studies with Other Explainable ML:
While EBM was our choice for interpretability, other
methods exist, such as Explainable Neural Networks
(XNNs), GA2M (Generalized Additive Models with
interactions), or even simpler rule-based classifiers.
Future work could benchmark these on the same
problem to see if any lighter-weight interpretable
method can match EBM’s performance. Additionally,
exploring SHAP or LIME not just for explanation
but to create simplified surrogate models might be
interesting, though surrogate models typically lose
fidelity.

Cross-Validation with Other Data: Testing the
framework on different datasets (e.g., LendingClub
data, mortgage datasets, or non-U.S. SME loans) would
ensure robustness. Broad validation could confirm
that the Light GBM—EBM approach generalizes across
credit contexts, or indicate what adjustments (e.g.,
hyperparameter tuning, recalibration) are needed.
Automated Machine Learning (AutoML): An
AutoML approach could be applied to this problem,
where the system searches over model architectures
(including pre-processing and feature engineering) to
see if any combination can exceed our manual approach.
AutoML might discover interactions or transformations
authors did not explicitly code. However, maintaining
interpretability would be a challenge if the best model
found is highly complex. Balancing AutoML with
interpretability constraints could itself be a research
topic.
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* By addressing these future directions, researchers and
practitioners can further enhance the reliability, fairness,
and utility of machine learning models in credit risk.
The goal is a robust, transparent credit scoring system
that stakeholders trust and that demonstrably improves
financial outcomes. Our study lays a strong foundation,
and authors anticipate continued advancements built
upon this work in the quest for better credit risk
modeling.
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