Leveraging Artificial Intelligence for University-Industry Creativity and Sustainability
Abstract
Purpose: Despite the growing recognition of the importance of university-industry partnerships, a significant gap exists in understanding how such collaborations can be optimized to foster sustainability and creativity in AI development.
Methods: This study examined the relationship between leveraging artificial intelligence and university-industry creativity and sustainability in Nigeria. A structured survey was used to gather quantitative data for the study.
Findings: The target population was the academics, entrepreneurs, and students in Nigeria's public universities. SmartPLS tools were used to analyze the data.
Implications: The findings suggest that university-industry sustainability and creativity are significantly influenced by the effective leveraging of artificial intelligence, such as research and development collaboration, technology transfer, and curriculum management.
Originality: The study's conclusions show that research and development collaboration, curriculum management, university-industry sustainability, and creativity have a significant association. According to the study, to achieve effective university-industry sustainability and creativity. Government, school administrators, and industry professionals should pay adequate attention to research and development collaboration, technology transfer, and curriculum management. This study proves that leveraging AI (research and development collaboration and curriculum management) positively correlates with university-industry sustainability and creativity. This study also shows how technology transfer can enhance university-industry sustainability and creativity.
-
Page Number : 31-47
-
Published Date : 2025-08-21
-
Keywords
Research and development collaboration, Technology transfer, Curriculum management, Sustainability
-
DOI Number
: 10.15415/jtmge/2025.161003
-
Authors
Nimota Jibola Kadir Abdullahi
References
- Ab Hamid, M. R., Sami, W., & Sidek, M. M. (2017). Discriminant validity assessment: Use of Fornell&Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890(1), 012163. https://doi.org/10.1088/1742-6596/890/1/012163
- Abdullahi, N. J. K. (2021). Managing entrepreneurial mindset towards bridging skill gap in tertiary education in Nigeria. International Business Education Journal, 14(2), 84–100. https://ejournal.upsi.edu.my/index.php/IBEJ/index
- Abdullahi, N. J. K. (2022). Curriculum management strategies and effective implementation of universal basic education in Nigeria. ProfesiPendidikanDasar, 9(1), 55–70. https://journal.ums.ac.id/index.php/ppd
- Afthanorhan, A., Awang, Z., &Aimran, A. (2020). An extensive comparison of CB-SEM and PLS-SEM for reliability and validity. International Journal of Data and Network Science, 4, 357–364. https://doi.org/10.5267/j.ijdns.2020.9.003
- Ahmad, F., & A. C. A., F. (2023). Leveraging generative AI solutions in art and design education: Bridging sustainable creativity and fostering academic integrity for innovative society. E3S Web of Conferences, 426, 01102. https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/63/e3sconf_icobar23_01102.pdf
- Aral, N., & Kiliçoğlu, E. A. (2022). Sustainable entrepreneurship education “early childhood.” International Journal of Commerce, Industry and Entrepreneurship Studies, 2(2), 702–712. https://utisgad.org/utisgad-2022-2-2-702/
- Birgili, B. (2015). Creative and critical thinking skills in problem-based learning environment. Journal of Gifted Education and Creativity, 1, 71–80. https://files.eric.ed.gov/fulltext/ED563985.pdf
- Brem, A., & Radziwon, A. (2017). Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark. Technological Forecasting and Social Change, 123, 130–141. https://ideas.repec.org/a/eee/tefoso/v123y2017icp130-141.html
- Cai, Y., & Etzkowitz, H. (2020). Theorizing the Triple Helix model: Past, present and future. Triple Helix, 7(2–3), 189–226. https://researchportal.tuni.fi/en/publications/theorizing-the-triple-helix-model-past-present-and-future
- Chedid, M., Carvalho, T., & Teixeira, L. (2020). University–software industry collaboration: An empirical study based on knowledge management. Knowledge Management Research & Practice, 1–13. https://www.cipes.pt/university-software-industry-collaboration-empirical-study-based-knowledge-management?language=en
- Chen, Z., Wu, M., Chan, A., Li, X., & Ong, Y. S. (2023). Survey on AI sustainability: Emerging trends on learning algorithms and research challenges. IEEE Computational Intelligence Magazine, 18(1), 60–77. https://arxiv.org/abs/2205.03824
- Choy, L. T. (2014). The strengths and weaknesses of research methodology: Comparison and complimentary between qualitative and quantitative approaches. Journal of Humanities and Social Science, 19(4), 99–104. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=1903635
- De Moortel, K., & Crispeels, T. (2018). International university–university technology transfer: Strategic management framework. Technological Forecasting and Social Change, 135, 145–155. https://ideas.repec.org/a/eee/tefoso/v135y2018icp145-155.html
- De Wit-de Vries, E., Dolfsma, W. A., van der Windt, H. J., & Gerkema, M. P. (2019). Knowledge transfer in university–industry research partnerships: A review. Journal of Technology Transfer, 44, 1236–1255. https://research.wur.nl/en/publications/knowledge-transfer-in-universityindustry-research-partnerships-a
- Dhiman, R., Miteff, S., Wang, Y., Ma, S. C., Amirikas, R., & Fabian, B. (2024). Artificial intelligence and sustainability: A review. Analytics, 3(1), 140–164. https://doi.org/10.3390/analytics3010008
- Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the Sustainable Development Goals perspective: A systematic literature review. Journal of Business Research, 121, 283–314. https://www.semanticscholar.org/paper/Artificial-intelligence-and-business-models-in-the-Vaio-Palladino/4dabbc4ff5b22def26576b04b078d1f45a997d85
- Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449. https://core.ac.uk/download/pdf/18508861.pdf
- Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed-mode surveys: The tailored design method (4th ed.). Wiley. https://www.wiley.com/en-fr/Internet,+Phone,+Mail,+and+Mixed+Mode+Surveys:+The+Tailored+Design+Method,+4th+Edition-p-9781118456149
- Dudkowski, R. (2021). Managing value co-creation in university–industry partnerships: Evidence and implications for strategy, culture, and innovation performance. Springer Nature. https://books.google.com.ng/books/about/Managing_Value_Co_creation_in_University.html?id=ehvdzgEACAAJ&redir_esc=y
- Enholm, I. M., Papagiannidis, E., Mikalef, P., &Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709–1734. https://ideas.repec.org/a/spr/infosf/v24y2022i5d10.1007_s10796-021-10186-w.html
- Etzkowitz, H. (2008). Triple helix innovation: Industry, university, and government in action. Routledge. https://mguntur.id/files/ebook/ebook_1605608206_cf742d707b4e0bf22bf3.pdf
- Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix: University–industry–government relations. A laboratory for knowledge-based economic development. EASST Review, 14(1), 18–36. https://www.academia.edu/86748511/National_Innovation_System_and_Its_Role_in_Increasing_GDP_Per_Capita_Evidence_from_Russia_?f_ri=499103
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
- Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330
- Hair, J. F., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. https://research.nottingham.edu.cn/en/publications/an-updated-and-expanded-assessment-of-pls-sem-in-information-syst
- Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101–110. https://ideas.repec.org/a/eee/jbrese/v109y2020icp101-110.html
- Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer. https://doi.org/10.1007/978-3-030-80519-7
- Hair, J. F., Risher, J., Sarstedt, M., & Ringle, C. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
- Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
- Henderson, R., &Serafeim, G. (2020). Tackling climate change requires organizational purpose. AEA Papers and Proceedings, 110, 177–180. https://www.aeaweb.org/articles?id=10.1257/pandp.20201067
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
- Hermundsdottir, F., & Aspelund, A. (2021). Sustainability innovations and firm competitiveness: A review. Journal of Cleaner Production, 280, 124715. https://www.semanticscholar.org/paper/Sustainability-innovations-and-firm-A-review-Hermundsdottir-Aspelund/62e7b99c922af3032a161137ed26c3e92370d2a1
- Jirapong, K., Cagarman, K., & von Arnim, L. (2021). Road to sustainability: University–start-up collaboration. Sustainability, 13(11), 6131. https://doi.org/10.3390/su13116131
- Kalu, A. A., & Peace, N. N. (2017). Assessment of entrepreneurial mindset on sustainability of Nigeria SMEs. International Journal of Business and Entrepreneurship Research, 11(2), 1–16. https://www.semanticscholar.org/paper/Assessment-of-Entrepreneurial-Mindset-on-of-SMEs-Ajike-Kalu/6bff5d3472f131239024281dab0859076bea6f0b
- Kilic, S. (2016). Cronbach alpha reliability coefficient. Journal of Mood Disorders, 6(1), 1–12. https://doi.org/10.5455/jmood.20160307122823
- Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Publications. https://books.google.com.my/books?id=Q61ECgAAQBAJ
- Marijan, D., & Gotlieb, A. (2021). Industry–academia research collaboration in software engineering: The Certus model. Information and Software Technology, 132, 106016. https://arxiv.org/abs/2204.11039
- Mayer, A. (2013). Introduction to statistics and SPSS in psychology (1st ed.). Pearson Education Limited. https://www.pearson.com/en-gb/subject-catalog/p/introduction-to-statistics-and-spss-in-psychology/P200000004951
- Miller, V. D., Poole, M. S., Seibold, D. R., Myers, K. K., Park, H. S., & Monge, P. (2013). Advancing research in organizational communication through quantitative methodology. Management Communication Quarterly, 25(1), 4–58. https://www.scholars.northwestern.edu/en/publications/advancing-research-in-organizational-communication-through-quanti
- Minh, D., Wang, H. X., & Li, Y. F. (2022). Explainable artificial intelligence: A comprehensive review. Artificial Intelligence Review, 55, 3503–3568. https://sejong.elsevierpure.com/en/publications/explainable-artificial-intelligence-a-comprehensive-review
- Mishra, S., Ewing, M. T., & Cooper, H. B. (2022). Artificial intelligence focus and firm performance. Journal of the Academy of Marketing Science, 50, 1176–1197. https://psycnet.apa.org/record/2023-19446-004
- Mohadeseh, M., Zhila, F., & Azizallah, D. (2017). Effectiveness of positive thinking training program on nurses’ quality of work life through smartphone applications. International Scholarly Research Notices, 2017, 1–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446857/
- Mugenda, A., & Mugenda, O. (2013). Research methods: Qualitative and quantitative approaches. ACTS Press. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=648986
- Neuman, W. L. (2013). Social research methods: Qualitative and quantitative approaches. Pearson Education. http://letrunghieutvu.yolasite.com/resources/w-lawrence-neuman-social-research-methods_-qualitative-and-quantitative-approaches-pearson-education-limited-2013.pdf
- Obschonka, M., &Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Business Economics, 55, 529–539. https://econpapers.repec.org/article/kapsbusec/v_3a55_3ay_3a2020_3ai_3a3_3ad_3a10.1007_5fs11187-019-00202-4.htm
- Opesemowo, O. A. G., & Adekomaya, V. (2024). Harnessing artificial intelligence for advancing sustainable development goals in South Africa's higher education system: A qualitative study. International Journal of Learning, Teaching and Educational Research, 23(3), 23–34. https://ijlter.org/index.php/ijlter/article/view/9733
- Orazbayeva, B., & Plewa, C. (2020). Academic motivations to engage in university–business cooperation: A fuzzy set analysis. Studies in Higher Education, 46(1), 1–13. https://www.semanticscholar.org/paper/Academic-motivations-to-engage-in-cooperation%3A-a-Orazbayeva-Plewa/3cd1334fb57c85a5d8079bd80b0424dc4b65e030
- Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14, 681–695. https://eprints.whiterose.ac.uk/136715/7/Purvis2018_Article_ThreePillarsOfSustainabilityIn.pdf
- Ramayah, T., Hwa, C., Chuah, F., Ting, H., &Memon, M. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis.https://www.goodreads.com/book/show/44057278-partial-least-squares-structural-equation-modeling-pls-sem-using-smart
- Sarpong, D., AbdRazak, A., Alexander, E., & Meissner, D. (2017). Organizing practices of university, industry and government that facilitate (or impede) the transition to a hybrid triple helix model of innovation. Technological Forecasting and Social Change, 123, 142–152. https://eprints.glos.ac.uk/10130/1/10130%20Sarpong%2C%20AbdRazak%2C%20Alexander%2C%20Meissner%20%282015%29%20Organizing%20practices%20of%20university%2C%20industry%20and%20government.pdf
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), Handbook of market research (pp. 587–632). Springer International Publishing. https://econpapers.repec.org/bookchap/sprsprchp/978-3-319-57413-4_5f15.htm
- Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach (7th ed.). John Wiley & Sons. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2371540
- Shi, X., Wu, Y., & Fu, D. (2020). Does university–industry collaboration improve innovation efficiency? Evidence from Chinese firms. Economic Modelling, 86, 39–53. https://research-repository.uwa.edu.au/en/publications/does-university-industry-collaboration-improve-innovation-efficie
- Song, Y., Zhang, J., Song, Y., Fan, X., Zhu, Y., & Zhang, C. (2020). Can industry–university research collaborative innovation efficiency reduce carbon emissions? Technological Forecasting and Social Change, 157, 120–132. https://ideas.repec.org/a/eee/tefoso/v157y2020ics0040162520309203.html
- Tejedor, G., Segalàs, J., Barrón, Á.,Fernández-Morilla, M., Fuertes, M. T., Ruiz-Morales, J., Gutiérrez, I., García-González, E., Aramburuzabala, P., & Hernández, À. (2019). Didactic strategies to promote competencies in sustainability. Sustainability, 11(7), 2086. https://www.mdpi.com/2071-1050/11/7/2086
- Van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1, 213–218. https://ouci.dntb.gov.ua/en/works/7qoxqQNl/
- Vargas, V. R., Lawthom, R., Prowse, A., Randles, S., & Tzoulas, K. (2019). Implications of vertical policy integration for sustainable development implementation in higher education institutions. Journal of Cleaner Production, 235, 733–740. https://eprints.whiterose.ac.uk/210030/
- Vazquez-Brust, D., Piao, R. S., de Melo, M. F. D. S., Yaryd, R. T., & Carvalho, M. M. (2020). The governance of collaboration for sustainable development: Exploring the “black box.” Journal of Cleaner Production, 256, 120–133. https://pure.port.ac.uk/ws/files/18444025/VAZQUEZ_BRUST_2020_cright_JCP_The_governance_of_collaboration_for_sustainable_development.pdf
- Weng, S. S., Liu, Y., & Chuang, Y. C. (2019). Reform of Chinese universities in the context of sustainable development: Teacher evaluation and improvement based on hybrid multiple criteria decision-making model. Sustainability, 11(9), 5471. https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5471-d273037.html
- Yıldırım, S. (2021). Do green women influencers spur sustainable consumption patterns? Descriptive evidence from social media influencers. Ecofeminism and Climate Change, 2(4), 198–210. https://www.igi-global.com/chapter/achieving-sustainable-development-through-a-green-economy-approach/236723
- Zhou, C., & Etzkowitz, H. (2021). Triple helix twins: A framework for achieving innovation and UN sustainable development goals. Sustainability, 13(12), 6535. https://www.mdpi.com/2071-1050/13/12/6535